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1. Introduction

High energy, small angle, scattering has always been the subject of much attention, since

the early days of elementary particle physics. While the phenomenological Regge theory,

centered around the ‘soft Pomeron’, has met with considerable success in reproducing

the experimental data for hadronic collisions, a fundamental understanding of this theory

rooted in QCD is still lacking and seems to even transcend our present capabilities — as

neither perturbative QCD, nor lattice gauge theory, can be applied in the relevant ‘Regge

kinematics’ (high energy, but soft momentum transfer).

In perturbative QCD, the resummation of the logarithmically enhanced diagrams leads

to the BFKL, or ‘hard’, Pomeron [1] which predicts a power-like growth with s for the

gluon occupation number and the scattering amplitudes. The growth is however faster

than observed in experiments, and is also problematic from a conceptual point of view as

it violates unitarity. Within the past decade there has been considerable activity and some

important progress towards understanding the unitarization of the BFKL Pomeron within

pQCD. These efforts have been mainly oriented in two directions:

(i) the calculation [2] and proper implementation [3] of the next-to-leading order correc-

tions to the linear BFKL equation, and

(ii) the inclusion of the non-linear effects, like multiple scattering and gluon saturation,

responsible for the unitarization of the scattering amplitudes [4 – 9].

– 1 –



J
H
E
P
0
1
(
2
0
0
8
)
0
2
6

Whereas weak coupling techniques are undoubtedly useful for the high-energy problems

which involve, at least, one hard momentum scale — so like deep inelastic scattering at

small x and large photon virtuality Q2 (s ≫ Q2 ≫ Λ2
QCD), or hadronic scattering with

large momentum transfer (s ≫ |t| ≫ Λ2
QCD) —, on the other hand it remains unclear

whether such approaches can shed any light on the ‘soft’ (|t| <∼ Λ2
QCD) aspects of Regge

phenomenology. For instance, is there any relation between the soft and the hard Pomerons,

and if so, then how to describe the transition between the two ? Such questions are

particularly difficult because of our inability to explore the transitive region where the

QCD coupling constant becomes strong. It is therefore interesting to study model field

theories which are analytically accessible at strong coupling and which share some of the

basic features of QCD at high energy — like the existence of a partonic description at weak

coupling and a Regge-like behavior at high energy, for any value of the coupling.

N = 4 supersymmetric Yang-Mills (SYM) theory with ‘color’ gauge group SU(Nc) and

the ‘t Hooft coupling constant λ = g2Nc treated as a free parameter offers a particularly

interesting theoretical laboratory for this purpose. At weak coupling, the high energy

behavior is just like in perturbative QCD — in particular, to lowest order, the BFKL

equation is formally identical in QCD and N = 4 SYM [10] — while at strong coupling

and in the large Nc limit the AdS/CFT correspondence [11] maps the theory onto a weakly

coupled superstring theory which naturally exhibits Regge behavior (see, e.g., [12 – 16]).

Such a change of behavior with increasing the coupling strength bears some resemblance

to the transition from the hard Pomeron to the soft Pomeron in QCD, although some

important differences persists. (For instance, when moving from weak to strong coupling,

the Pomeron intercept decreases in QCD, while it increases in the N = 4 SYM theory.)

Thus one can hope that some useful insights for the corresponding QCD problems may be

gleaned from a study of the Regge regime in N = 4 SYM theory and its variants.

In this paper we study deep inelastic scattering (DIS) in strongly coupled N = 4 theory

at small–x where x ≃ Q2/s is the usual Bjorken variable. The basic formulation was given

by Polchinski and Strassler [15] in the strict large–Nc limit (Nc → ∞ at fixed energy),

where however no unitarity issue arises: being suppressed by a factor 1/N2
c , the elementary

scattering amplitude is always smaller than one, and is dominated by the exchange of a

single ‘Pomeron’. In this strong-coupling context, the ‘Pomeron’ is the t-channel object

exchanged at tree-level and at high energy in the dual string theory [16] — a reggeized

graviton propagating in the curved space-time that the string theory lives in and which is

asymptotically AdS5 × S5.

Thus, in order to study unitarization, one should rather consider the high-energy limit

s → ∞ at large, but fixed, values of Nc, and this is what we shall do in this paper. This

is again similar to QCD (at large Nc), where the unitarity corrections are suppressed by

inverse powers of Nc, hence a flexible definition of the ‘large–Nc limit’ is necessary to

observe such phenomena. The problem of unitarization in the context of string theory

is notoriously difficult, even at weak (string) coupling g2
s ∝ 1/N2

c , because of the need

to resum multi-loop string amplitudes to all orders, and here we shall not attempt to

provide a full analysis in that sense (see however the approaches in refs. [12, 17, 18]).

Rather, our goal is more modest and also more pragmatic: Following again the example of
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weakly-coupled QCD — where it has been shown [19 – 22] that one can follow the onset of

unitarity corrections via an appropriate extrapolation of the results at weak scattering (in

that case, the single BFKL-Pomeron exchange) —, we shall compute, at strong coupling,

the saturation line which separates the weak-scattering from the strong-scattering regions

in the kinematical plane (x,Q2) for DIS.

Specifically, while staying in the weak-scattering regime — which at strong coupling,

like at weak coupling, corresponds to sufficiently large values of Q2 for a given value x ≪ 1

—, we shall first identify those contributions to the scattering amplitude which become

dominant when extrapolating towards the unitarity limit, and then deduce the saturation

line as the curve Q2
s(x) along which the amplitude is constant and of O(1). What at a

first sight may look as a rather straightforward exercise in unitarizing the single-Pomeron

exchange of refs. [15, 16], turns out to be quite subtle, because of several issues:

First, the formulation of the unitarity constraint is rather non-trivial in the context of

DIS, where the scattering is initiated by an off-shell, electromagnetic, current (actually, an

R-current in N = 4 SYM). Within the context of pQCD, this issue is most conveniently

solved by using the dipole factorization of DIS at small x [24, 25], where one can unam-

biguously identify the on-shell hadronic state which scatters off the proton, and for which

the unitarity bound can be properly formulated: the quark-antiquark excitation of the vir-

tual photon, or ‘color dipole’ (see also section 2 below, and refs. [26, 27] for more detailed

discussions). It turns out that a formally similar factorization holds at strong coupling as

well, with the color dipole replaced by a vector-field fluctuation of the background metric

(the ‘R-boson’), which propagates on-shell before eventually scattering off the ‘dilaton’

target [15]. This makes it natural to enforce the unitarity constraint at the level of the

elementary scattering between the R-boson and the dilaton. This constraint will determine

our saturation line.

Second, unlike what happens in pQCD, where the single (BFKL) Pomeron exchange

controls the dipole amplitude in the vicinity of the unitarity limit for all the relevant

values of x and Q2, the situation at strong coupling appears to be more complex, and also

more interesting: there, the single-Pomeron exchange represents the dominant contribution

(when approaching the saturation line, once again) only for sufficiently low values of Q2, up

to a critical value Q2
c ∝ exp{4 ln N2

c /
√

λ}. But for Q2 >Q2
c , a new mechanism takes up the

leading role, namely the diffractive scattering via the exchange of two, or more, elementary

(massless) gravitons. Note that Q2
c → ∞ in the strict large–Nc limit, which explains why

this new mechanism has not been included in the analysis in ref. [15]. Interestingly, the

picture of DIS at high energy and Q2 > Q2
c that we shall arrive is quite close to that of

Regge scattering in superstring theory in flat space, as studied by Amati, Ciafaloni and

Veneziano [12].

In fact, for a strongly-coupled gauge theory having a dual string description, the gravi-

ton exchange is naturally more effective, at high energy and large Q2, than the single-

Pomeron one: the amplitude for one-graviton exchange grows very fast with the energy, as

s ∼ 1/x, because the graviton has spin j = 2, and, moreover, its long-range non-locality

can efficiently match the large separation in scales between the highly virtual R-current

and the dilaton. (Of course, being real, the single graviton exchange cannot contribute to
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the DIS structure functions, but multiple exchanges can do so, via diffractive final states

where the outgoing fields are separated in rapidity.) The reason why the single-Pomeron

exchange is nevertheless found to dominate at relatively low Q2 is because, in the AdS5 ge-

ometry, the massless graviton is turned off at very short separations (in the radial direction

of AdS5), by the curvature of space-time. Or, by the holographic principle of AdS/CFT

(which becomes manifest in the factorization of DIS alluded to above), small separations

in AdS5 correspond to low virtualities Q2 on the gauge theory side.

This transition, from a single-Pomeron to multiple graviton exchanges, with increas-

ing Q2 has important consequences on the shape of the saturation line, correspondingly

obtained as the juxtaposition of two curves which smoothly match with each other at

Q2 = Q2
c , and also on the behaviour of the DIS cross-section in the vicinity of this line.

We thus find that, at large Q2 >Q2
c , the structure function F2(x,Q2) is strongly peaked at

the saturation momentum — namely, F2 ∝ N2
c Q2 when Q2 < Q2

s(x), but F2 ∝ 1/(N2
c Q2)

when Q2≫Q2
s(x) —, which is suggestive of a partonic interpretation with all the partons

living at transverse momenta k⊥ <∼ Qs(x) and having occupation numbers of O(1). This

is further supported by an analysis of the ‘sum-rule’
∫

dxF2(x,Q2) which expresses the

energy-momentum conservation: at large Q2, this sum-rule appears to be saturated by

values of x near the saturation line, i.e., the largest values of x at which one can still find

the partons. Needless to say, at strong coupling such a partonic language must be used

with care, since the standard relations between structure functions and parton distribu-

tions hold, strictly speaking, only in perturbation theory. It is nevertheless interesting that

the picture of parton saturation suggested by our analysis appears as a natural continua-

tion towards strong coupling of the corresponding results as weak coupling, as obtained in

pQCD [19, 28, 29, 4 – 9, 27].

This paper is organized as follows: In section 2, we give a self-contained review of

high-energy DIS in QCD at weak coupling, in the framework of dipole factorization. The

focus is on the definition and the construction of the saturation line, with the purpose of

facilitating the subsequent discussion at strong coupling, and also the comparison between

the weak and, respectively, strong-coupling scenarios. In section 3, we describe our setup of

DIS at strong coupling following [15] and demonstrate a limitation of the single-Pomeron

exchange approximation, which fails to saturate the energy-momentum sum rule at large

Q2. This points out towards the importance of the massless graviton exchanges, which are

then discussed at length in section 4. On this occasion, we use and extend the ‘Pomeron’

approach initiated in refs. [14, 15] and more systematically developed in [16], with the

purpose of demonstrating the reemergence of the massless graviton propagator at large

Q2. We then describe multiple graviton exchanges at a heuristic level, using in particular

the results in refs. [12, 17, 18] to deduce the onset of unitarity corrections. We summarize

our results for the saturation line in a ‘phase diagram’, figure 3, for gauge theories at high

energy and strong ’t Hooft coupling, to be compared with the corresponding diagram at

weak coupling in figure 1. Section 5 is devoted to a discussion of our results, in relation

with a possible partonic interpretation.
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2. Saturation momentum and geometric scaling in perturbative QCD

As mentioned in the Introduction, deep inelastic lepton-hadron scattering (DIS) at rela-

tively high virtuality Q2 ≫ Λ2
QCD for the exchanged photon and in the high-energy limit

s ≫ Q2 represents a rather clean laboratory for a theoretical study of unitarization in

the framework of perturbative QCD — in particular, for the calculation of the saturation

momentum. More precisely, in what follows we shall work in the ‘small–x’ regime of DIS,

characterized by

αs ≪ 1, x ≡ Q2

s
≪ 1, and αs ln

1

x
≥ 1 . (2.1)

A ‘lowest-order calculation’ in this regime requires an all-order resummation of the per-

turbative contributions of order (αs ln(1/x))n, with n ≥ 1. This resummation can be per-

formed by solving appropriate evolution equations, constructed within pQCD, which are

generally non-linear, with the non-linear terms accounting for the ‘unitarity corrections’ —

gluon saturation and multiple scattering [4, 5, 7, 8, 30]. However, a linear approximation

— the BFKL equation [1, 25, 2] — holds within an intermediate range of energies, in which

the non-linear effects remain parametrically small. The boundary of the validity region for

this approximation in the kinematical plane (x,Q2) is known as the ‘saturation line’; this

is the curve Q2 = Q2
s(x) along which the scattering amplitude is constant and of order one.

Remarkably, it turns out that the position of this line can be determined via calculations

based on the BFKL approximation alone, without a detailed knowledge of the non-linear

dynamics responsible for unitarization [20 – 22]. In what follows, we shall briefly review this

calculation to ‘leading-logarithmic accuracy’ (LLA), i.e., at the level of the leading-order

BFKL equation. (See also ref. [31, 32] for more accurate analyses, including NLO effects.)

To LLA, the cross-sections in QCD at high energy can be computed within a fac-

torization scheme known as ‘kT -factorization’ (see [33, 26]), which is consistent with the

non-locality of the high-energy evolution in transverse coordinates. When applied to DIS,

this is most suggestively written as dipole factorization: the virtual photon γ∗ fluctuates

into a quark-antiquark pair in a color-singlet state, or ‘color dipole’, which then scatters off

the gluon field inside the target. More precisely, the DIS structure function F2 is computed

as

F2(x,Q2) =
Q2

4π2αem
σγ∗p(Q

2, x), (2.2)

with σγ∗p the total γ∗p cross-section:

σγ∗p(Q
2, x) =

∫ 1

0
dz

∫

d2
r

∑

a=T,L

|Ψa(z, r)|2 σdipole(r, x), (2.3)

where the subscript a refers to the polarization of the virtual photon (transverse or longi-

tudinal), and Ψa(z, r) is the wavefunction describing the dissociation of the virtual photon

into a qq̄ pair with transverse size r = |r| and where the quark (antiquark) takes away a
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fraction z (respectively, 1 − z) of the photon energy. For massless quarks, one finds [24]

|ΨT (z, r)|2 = F [z2 + (1 − z)2]Q̄2K2
1 (Q̄r),

|ΨL(z, r)|2 = 4F Q2z2(1 − z)2K2
0 (Q̄r) , (2.4)

where Q̄2 ≡ z(1 − z)Q2, K0 and K1 are modified Bessel functions, and F ≡
(Ncαem/2π2)

∑

f e2
f , with ef the electric charge of the quark with flavor f . The factor

of Nc comes from the sum over the color degrees of freedom of the quarks. The integration

over r in eq. (2.3) is effectively restricted to r < 1/Q̄ by the Bessel functions, which are

exponentially suppressed for Q̄r ≫ 1.

Furthermore, eq. (2.3) involves the total cross-section σdipole(x, r) for the scattering

between a color dipole with transverse size r and the hadronic target. For the present

purposes, it is convenient to take the target itself as a collection of dipoles, succinctly

referred to as the onium. In its own rest frame, the onium is a collection of dipoles with

sizes r′ ≤ R0 distributed according to a density function n(r′) and which are homogeneously

distributed in impact parameter space within a disk of radius R0. Note that R0 plays the

role of an ‘infrared cutoff’ for this dipole distribution, in the sense that this is the maximally

allowed dipole size. To ensure applicability of perturbation theory, we shall assume that

1/R2
0 ≫ Λ2

QCD (but this assumption is often relaxed in phenomenological studies of DIS,

in which case R0 is identified with the proton radius). Also, it is convenient to choose

Q2 ≫ 1/R2
0, in which case the integral in eq. (2.3) is dominated by relatively small dipole

sizes r (for the projectile dipole), such that r ≪ R0.

To the accuracy of interest, the dipole-onium cross-section can be evaluated as

σdipole(r, τ) =

∫ ∞

0

dr′2

r′2
σDD(r, r′, τ)n(r′) , (2.5)

where τ ≡ ln(1/x) is the ‘rapidity’ and σDD(r, r′, τ) is the total cross-section for the scat-

tering between two dipoles with transverse sizes r and r′ separated by a rapidity interval

τ . The dipole density is chosen as

n(r′) =

(

r′2

R2
0

)∆

Θ(R0 − r′), (2.6)

where the power ∆ plays the role of an ‘anomalous dimension’: indeed, the standard

situation in perturbative QCD (at least for sufficiently small r′) is ∆ = 0, corresponding

to the bremsstrahlung of small dipoles. The associated distribution is not normalizable (it

exhibits a logarithmic divergence at r′ → 0), but this poses no problem for the calculation of

the cross-section (2.5) since σDD(r, r′, τ) vanishes sufficiently fast when r′ → 0 (see below).

A normalizable hadronic state would have ∆ > 0, in which case n(r′), once properly

normalized, would have the interpretation of the probability density to find a dipole of size

r′ in the target. In what follows, we shall consider the cases where ∆ is positive or zero.

We shall soon compute the cross-section (2.5) in the BFKL approximation and then

use the result, in association with the unitarity constraint, to deduce an equation for the

saturation line. In preparation of this, it is useful to open a parenthesis and explain our
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specific use of the unitarity constraint for the present purposes. (A similar use will be made

in the subsequent sections in the context of DIS at strong coupling.)

The unitarity bound is most easily formulated in terms of the scattering amplitude

T (r, b, τ) at fixed impact parameter b. It then reads T (r, b, τ) ≤ 1, where the upper

bound T = 1 (the ‘black disk limit’) describes a situation where the scattering occurs with

probability one. Note that we use conventions in which the S-matrix is written as S = 1−T ,

with T a real quantity at high energy. (That is, our T corresponds to the imaginary part of

the conventionally-defined ‘scattering amplitude’, which becomes predominantly imaginary

at high energy.) However, the previous formulæ, eqs. (2.3)–(2.5), involve directly the

cross-sections, which are obtained from the respective amplitudes after integrating over b :

σdipole(r, τ) = 2
∫

d2b T (r, b, τ), etc. The unitarity constraint then becomes more subtle:

with increasing energy, a cross-section can rise indefinitely, even after the ‘black disk’

limit has been achieved at central impact parameters, because of the radial expansion

of the black disk. This expansion is however quite slow, logarithmic in the energy (to

comply with Froissart bound), which is indeed much slower than the corresponding power-

like increase of the amplitude in the BFKL regime (see below). Hence, it is possible to

neglect the Froissart expansion (or, at least, treat this in an adiabatic approximation) in

a first study of unitarization. Then, the unitarity bound reads σDD(r, r′, τ) ≤ 2πr2
> (with

r> = max(r, r′)) for the dipole-dipole scattering, and σdipole(x, r) ≤ 2πR2
0 for the dipole-

onium one. It is in fact more suggestive to introduce scattering amplitudes averaged over

b, e.g., T (r, τ) ≡ σdipole(r, τ)/(2πR2
0), in terms of which the unitarity bound reads simply

T ≤ 1.

We can now explain our strategy for computing the saturation line: Starting in the

regime where the scattering is weak, T ≪ 1, we compute the (average) scattering amplitude

from the solution to the BFKL equation and then extrapolate the result towards the

unitarity limit T ∼ O(1). The saturation momentum Qs(τ) is then obtained via the

condition

T (r, τ) ≃ 1 for r ≃ 1/Qs(τ) . (2.7)

That is, 1/Qs(τ) is the critical dipole size for the onset of unitarity corrections (in the form

of multiple scattering) in dipole-target scattering at rapidity τ [20, 21]. This is also the

critical momentum scale for parton saturation in the target wavefunction [19, 28, 29, 6, 9],

in a frame where the target has rapidity τ : for transverse momenta k⊥ <∼ Qs(τ), the

gluon occupation numbers saturate at a value ng ∼ 1/(αsNc), which in turn implies that

the (anti)quark occupation numbers saturate at a value nq ∼ 1. (Recall that, at small

x and relatively low k⊥, the quark distribution is driven by gluons, which dominate the

small–x part of the wavefunction.) This profound link between dipole unitarization and

gluon saturation in pQCD can be understood as a consequence of the relation T (τ, r) ∼
ᾱsng(τ, k⊥ ∼ 1/r), valid in the BFKL regime, between the dipole amplitude and the gluon

occupation number.

By using eq. (2.7) together with the BFKL solutions to be shortly presented, we shall

compute the saturation lines for both dipole-dipole, and dipole-onium, scattering. For

more clarity, let us anticipate here the main conclusions that we shall arrive at:

– 7 –
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(i) The value of the saturation momentum depends upon the nature of the target, but

its evolution with increasing energy does not — the evolution is universal.

(ii) The saturation momentum of the onium coincides with that of its ‘softest’ component

— the constituent dipole with maximal size r′ ∼ R0.

We now close the parenthesis and return to the calculation of the cross-section in the BFKL

approximation. When applied to the dipole-dipole cross-section σDD(r, r′, τ), the BFKL

equation [1] reads (with ᾱs ≡ αsNc/π)

∂

∂τ
σDD(r, r′, τ) =

ᾱs

2π

∫

d2
z

r
2

z
2(r − z)2

{

− σDD(r, r′, τ) + σDD(z, r′, τ) + σDD(|r − z|, r′, τ)
}

. (2.8)

This equation has been written here as an evolution in the projectile size r for a given target

size r′. (Of course, the function σDD(r, r′, τ) is symmetric in r and r′.) It has a simple

physical interpretation: in one evolution step (τ → τ + dτ), the dipole r can split into

two dipoles, with sizes z and respectively r − z, which then interact with the target. The

‘BFKL kernel’ ᾱs
2π [r2/z2(r − z)2] represents the differential probability for such a splitting

to occur per unit rapidity. To solve eq. (2.8), we also need an initial condition at low energy

(τ = 0). To the present accuracy, this is computed as the exchange of two gluons, which

yields

σDD(r, r′, τ = 0) = 2πα2
sr

2
<

(

1 + ln
r>

r<

)

, (2.9)

where r< = min(r, r′) and r> = max(r, r′). This cross-section shows ‘color transparency’

— it vanishes like r2
< when r< → 0 —, meaning that a very small dipole scatters only

weakly. By using eq. (2.9), one can easily check that, for τ = 0 and r ≪ R0, the dipole-

onium cross-section (2.5) is dominated by relatively large target dipoles, with r ≪ r′ ≤ R0.

(When ∆ = 0, the large dipoles dominates over the small (r′ < r) ones by a large logarithm

ln(R0/r).) As we shall later see, the feature is preserved by the evolution with increasing

τ .

The solution to the BFKL equation with the initial condition (2.9) is most conveniently

obtained in Mellin space, where it reads

σDD(r, r′, τ) = πα2
sr

′2
∫

C

dγ

2πi

1

γ2(1 − γ)2

(

r2

r′2

)1−γ

eτχ(γ) (2.10)

where χ(γ) is the eigenvalue of the BFKL kernel in Mellin space, generally referred to as

the BFKL characteristic function

χ(γ) = ᾱs{2ψ(1) − ψ(γ) − ψ(1 − γ)}, ψ(γ) ≡ d lnΓ(γ)/dγ, (2.11)

and the integration contour C runs parallel to the imaginary axis with 0 < Re(γ) < 1.

Note the symmetry property χ(γ) = χ(1 − γ), which reflects the conformal invariance of
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the BFKL evolution. In view of this, one can check that eq. (2.10) is symmetric under

r ↔ r′, as it should.

The inverse Mellin transform in eq. (2.10) can be evaluated via a saddle point ap-

proximation, in which the value of the saddle point depends upon the balance between the

kinematical variables ᾱsτ and ρ−ρ′ = ln(r′2/r2). Here, we have introduced the logarithmic

variables ρ ≡ ln(R2
0/r

2) and ρ′ ≡ ln(R2
0/r

′2) which are convenient for what follows. At this

point, the reference scale inside the logarithms is arbitrary (it anyway cancels out in the

difference ρ − ρ′), but for later convenience we have chosen it as the onium size R0.

Consider first the formal high-energy limit ᾱsτ → ∞ at fixed ρ − ρ′ (this is formal

since the respective solution violates the unitarity bound already for relatively low energies,

as we shall shortly see). Then the saddle point γ0 is determined by the minimum of the

characteristic function:

χ′(γ0) = 0 =⇒ γ0 = 1/2 , (2.12)

and eq. (2.10) can be evaluated by expanding χ(γ) around γ0, to second order (‘diffusion

approximation’): writing

γ = 1/2 − iν , (2.13)

one obtains (notice that χ(1/2 − iν) is an even function of ν, by conformal symmetry)

χ(1/2 − iν) = ω0 − D0ν
2 + O(ν4) with ω0 = 4 ln 2ᾱs, D0 = 14ζ(3)ᾱs , (2.14)

and then the Gaussian integration over ν can be easily performed to yield

σDD(r, r′, τ) ≃ 8α2
s

eω0τ

√
πD0τ

(

r2r′2
)1/2

exp

{

− ln2(r2/r′2)
4D0τ

}

. (2.15)

This expression exhibits the ‘BFKL Pomeron’, i.e., an exponential increase with τ at fixed

r and r′. Clearly, when extrapolated at large τ , this behaviour violates the unitarity

bound. For instance, when r ∼ r′, this happens at a critical rapidity τcr ∼ (1/ω0) ln(1/α2
s),

which is parametrically not that high. (Recall that the ‘high-energy’ regime starts only at

τ ∼ 1/ᾱs.)

It is nevertheless possible to explore higher rapidities τ > τcr while staying within the

limits of the BFKL approximation provided we evolve along an oblique direction in the

kinematical plane ρ − τ (see also figure 1): when increasing τ , we should simultaneously

increase ρ (i.e., decrease the ratio r/r′), in such a way that the scattering amplitude remains

small: T (r, r′, τ) ≪ 1. In particular, the saturation line ρ = ρs(τ) corresponds to a direction

of evolution along which the amplitude is constant and of order one, cf. eq. (2.7).

This also means that, in order to follow the saturation line, one must abandon the

symmetry between the projectile and the target dipoles (r ↔ r′), which has been manifest

so far. If the target dipole size is fixed to r′, then with increasing τ we must evolve towards

smaller and smaller values for r. It is then natural to write σDD(r, r′, τ) = 2πr′2T (r, r′, τ),

where r < r′ and the unitarity bound corresponds to T (r, r′, τ) = 1. The BFKL approx-

imation holds so long as T (r, r′, τ) ≪ 1, but it allows us to approach the saturation line
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from small r (large ρ) values, and thus compute the saturation momentum according to

eq. (2.7). To that aim, however, one cannot rely on the Pomeron saddle point, eq. (2.12),

anymore, rather one must determine the saddle point γs corresponding to an evolution

along the saturation line (ρ = ρs(τ)). By combining the saddle point condition:

τχ′(γs) = −(ρs − ρ′) , (2.16)

with the condition that the amplitude (2.10) be approximately constant along the satura-

tion line:

τχ(γs) − (1 − γs)(ρs − ρ′) − ln(1/α2
s) = 0, (2.17)

(we have only kept the dominant parametric dependencies upon τ , ρs and αs), one obtains

χ′(γs)

χ(γs)
= − 1

1 − γs
=⇒ γs ≈ 0.372,

ρs(τ, r
′) = ρ′ + vsτ − ln(1/α2

s)

1 − γs
with vs ≡ χ(γs)

1 − γs
≈ 4.883ᾱs . (2.18)

(We have assumed here that τ , and hence ρs, are large enough for the term ln(1/α2
s) to be

treated as a small perturbation.) Note that γs is a pure number, independent of either τ

or ᾱs, corresponding to the fact that ρs(τ) is a straight line, with slope vs ∼ O(ᾱs).

For ρ larger than ρs, but not much larger, one can estimate the amplitude by expanding

eq. (2.10) around γs: writing γ = γs − iν, and expanding to second order in ν, one finds

τχ(γ) − (1 − γ)ρ − ln(1/α2
s) ≃ −(1 − γs)(ρ − ρs) − iν(ρ − ρs) − Dsτν2, (2.19)

where Ds = χ′′(γs)/2 ≈ 24.26ᾱs. This limited expansion is valid so long as 1 < ρ − ρs ≪
Dsτ . In this range, the amplitude is obtained by performing the Gaussian integration over

ν, as

T (r, r′, τ) ≃
(

r2Q2
s

)1−γs

√
πDsτ

exp

{

− ln2(r2Q2
s)

4Dsτ

}

, (2.20)

where the saturation momentum (here, for a target dipole with size r′)

Q2
s(r

′, τ) = (α2
s)

1/(1−γs) 1

r′2
evsτ (2.21)

appears as the natural reference scale for measuring the projectile dipole size. When

viewed as a function of rQs, the amplitude near saturation, eq. (2.20), is universal, i.e.,

independent of the specific properties of the target, but uniquely fixed by the evolution.

Note that, in eq. (2.20), γs plays the role of an anomalous dimension. The evolution

of the saturation momentum with increasing τ , cf. eq. (2.21), is universal as well, and

controlled by the ‘saturation exponent’ vs. The above calculation yields vs ∼ O(1) for

ᾱs = 0.2÷ 0.3, a rather large value that would be inconsistent with the phenomenology at

HERA or RHIC. However, it turns out that, after taking into account the next-to-leading
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order BFKL corrections [2, 3], this value is reduced to vs ≈ 0.3 [31], which is indeed in the

ballpark of the various phenomenological analyses (see, e.g., [34 – 36] for studies at HERA).

We now return to the problem of dipole-onium scattering, cf. eqs. (2.5)–(2.6), with the

purpose of computing the corresponding saturation momentum Qs(τ). As before, we shall

approach the saturation line from the weak scattering regime, i.e., from relatively small

dipole sizes r ≪ 1/Qs(τ). This procedure meets with a subtle point though: although the

overall scattering is, by assumption, weak, T (r, τ) ≪ 1, this is not necessarily so for all

the individual dipoles which compose the onium and which contribute to the convolution

in eq. (2.5). The problem comes from the relatively small dipoles which, according to

eq. (2.21), develop large saturation momenta (meaning that they evolve into ‘hot spots’

with high gluon density), off which the projectile dipole can strongly scatter. Hence, when

evaluating the contribution of such small dipoles to the total cross-section, one cannot

rely on the BFKL approximation anymore. Still, as we shall shortly argue, this brings no

serious complication, since, after being properly unitarized, the small dipoles give negligible

contributions to the overall cross-section in the vicinity of the saturation line.

To see this, one can use the following, piecewise, approximation for the dipole-dipole

cross-section at high energy,

σDD(r, r′, τ) ≈ 2πr2
>







T
(

r< Qs(r>, τ), τ
)

for r< ≪ 1/Qs(r>, τ)

1 for r<
>∼ 1/Qs(r>, τ) .

(2.22)

In the first line, T (r< Qs(r>, τ), τ) is the amplitude in the weak scattering regime, as given

by eqs. (2.20)–(2.21) after replacing r → r< and r′ → r>. The second line represents the

black disk regime. The precise transition between these two regimes is not under control,

but this is irrelevant for the present purposes. By inserting eq. (2.22) into eq. (2.5) and

performing the integration over r′, one can estimate the dipole-onium scattering amplitude

T (r, τ) ≡ σdipole(r, τ)/2πR2
0. The very small target dipoles with r′ < r are easily seen to

be irrelevant, since their contribution to T (r, τ) is of order r2/R2
0 ≪ 1. (Recall that we

are only interested in contributions which can approach the unitarity limit T = 1 when

r → 1/Qs(τ).) To evaluate the contribution of the larger dipoles with r < r′ ≤ R0, it

is again convenient to use logarithmic variables (ρ ≡ ln(R2
0/r

2), etc.), and notice that

eq. (2.18) can be rewritten as

ρs(τ, r
′) = ρ′ + ρs0(τ), ρs0(τ) ≡ vsτ − ln(1/α2

s)

1 − γs
, (2.23)

where ρs0(τ) represents the saturation momentum for a dipole with the maximal size

r′ = R0. We anticipate here that in the regime of interest we have ρ > ρs0(τ). Then the

contribution of the target dipoles with ρ′ < ρ (i.e., r′ > r) can be evaluated as

T (ρ, τ) ≃
ρ−ρs0
∫

0

dρ′ e−(1−γs)(ρ−ρ′−ρs0) e−
(ρ−ρ′−ρs0)2

4Dsτ e−(1+∆)ρ′ +

ρ
∫

ρ−ρs0

dρ′ e−(1+∆)ρ′ , (2.24)

where the first (second) term in the r.h.s. corresponds to large dipoles which scatters only

weakly (respectively, to relatively small dipoles for which the unitarity limit has been
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reached). The first integral in the r.h.s. involves the overall exponential factor

e(1−γs)ρ′ e−(1+∆)ρ′ = e−(∆+γs)ρ′ (2.25)

where the exponent ∆ + γs is strictly positive in pQCD (recall that ∆ ≥ 0 and γs ≈ 0.37).

It is then easy to check that, so long as ρ− ρs0 < 2(∆ + γs)Dsτ , this integral is dominated

by its lower limit ρ′ = 0, i.e., by target dipoles of the largest possible size r′ ∼ R0. As for

the second integral in eq. (2.24), this is dominated by its own lower limit, at ρ′ = ρ − ρs0.

One thus finds

T (ρ, τ) ∼ 1

∆ + γs
e−(1−γs)(ρ−ρs0) e−

(ρ−ρs0)2

4Dsτ +
1

∆ + 1
e−(1+∆)(ρ−ρs0) . (2.26)

As just mentioned, ∆ + γs > 0, hence the second term in the r.h.s. is exponentially sup-

pressed w.r.t. the first one. Thus, finally (up to a slowly varying prefactor),

T (ρ, τ) ∼ e−(1−γs)(ρ−ρs0) e−
(ρ−ρs0)2

4Dsτ for ρ − ρs0 < 2(∆ + γs)Dsτ , (2.27)

which is essentially the same result as for a target made with a single dipole of size R0

(compare to eq. (2.20)). In particular, the saturation momentum of the onium coincides

with that of its largest dipole component (cf. eq. (2.21)): ρs(τ) = ρs0(τ), or

Q2
s(τ) = (α2

s)
1/(1−γs) 1

R2
0

evsτ . (2.28)

This is quite intuitive: the onium starts to look ‘black’ as a whole only when a large

dipole, which covers all (or most) of the hadron disk, has evolved into a system with high

gluon density on the resolution scale of the projectile. Smaller dipoles reach the unitarity

limit much faster (on that particular resolution scale), but their contributions to the total

cross-section are suppressed by their small area.1

The high-energy dipole amplitude in eqs. (2.20) or (2.27) exhibits an interesting struc-

ture, which can be better appreciated by comparison with the low-energy amplitude (2.9),

or the (purely) BFKL prediction at high energy, eq. (2.15): Besides the power-law r2(1−γs)

with anomalous dimension γs ≈ 0.37, there is also a Gaussian factor describing diffu-

sion in the logarithmic variable ρ ∼ ln(1/r2). This shows that, when increasing τ , the

amplitude gets built via a diffusive process which gets most of its support from the re-

gion 0 < ρ − ρs <
√

4Dsτ above the saturation line. For τ large enough, such that

Q2
s(τ) ≫ Λ2

QCD, this region lies fully in the perturbative domain, thus confirming the inter-

nal consistency of our present approach. The physics of saturation/unitarization eliminates

the symmetric diffusion characteristic of the (pure) BFKL evolution, cf. eq. (2.15), which

would invalidate the use of perturbation theory.

In particular, within the more restricted window ρ − ρs ≪ √
4Dsτ (close to the satu-

ration line), the diffusion term in eq. (2.27) can be ignored, and then the amplitude shows

geometric scaling, i.e., it depends upon r and τ only via the single variable rQs(τ):

T (r, τ) ∼ e−(1−γs)(ρ−ρs) =
(

r2Q2
s(τ)

)1−γs
for ρ − ρs ≪

√

4Dsτ . (2.29)

1Of course, the physical picture would be different if ∆ was negative and large enough, in such a way to

bias the dipole distribution (2.6) towards small sizes. Then, the onium could become black as a whole (on

a given resolution scale) by getting covered with many small dipoles which are individually black.
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Figure 1: A ‘phase diagram’ for the high energy evolution in pQCD in the presence of unitarity

corrections and gluon saturation. (We recall that ᾱs ≡ αsNc/π.)

This scaling property is an important consequence of the non-linear dynamics responsible

for unitarization on the shape of the amplitude in the weak scattering regime ‘above sat-

uration’ (ρ > ρs). Via the dipole factorization (2.3), this property gets transmitted to the

DIS cross-section in the high Q2 regime at Q2 > Q2
s(τ) :

F2(Q
2, τ)

Q2
∼ σγ∗p(Q

2, τ) ∼ NcR
2
0

(

Q2
s(τ)

Q2

)1−γs

for Q2
s(τ) <∼ Q2 ≪ Q2

g(τ), (2.30)

where Q2
g(τ) ≡ Q2

s(τ)e
√

4Dsτ is the upper bound of the scaling window, cf. eq. (2.29).

It is furthermore interesting to note the behaviour of F2 for very small values of Q2,

deeply at saturation (Q2 ≪ Q2
s(τ)). Then, the virtual photon cross-section is dominated

by large dipoles, with 1/Q2
s(τ) < r2 < 1/Q2, for which the black disk limit is saturated:

σdipole(r, τ) ≈ 2πR2
0. One then finds (the logarithm is generated by the integral over r2)

F2(Q
2, τ)

Q2
∼ NcR

2
0 ln

Q2
s(τ)

Q2
for Q2 ≪ Q2

s(τ), (2.31)

which exhibits geometric scaling too. Remarkably, it turns out that a similar scaling has

been observed indeed [35] in the HERA data for DIS at small x ≤ 0.01 and up to relatively

large values of Q2 ∼ 100 GeV2 (well above the saturation momentum at HERA, estimated

in the ballpark of 1GeV). The ‘phase-diagram’ for high energy evolution in pQCD which

emerges from the previous considerations is graphically summarized in figure 1.
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3. DIS at strong coupling

3.1 The setup

With this section we begin the study of the most interesting problem for us here, namely

DIS at strong ’t Hooft coupling and high energy. Specifically, our physical gauge theory

will be a deformation of the N = 4 SYM theory in the regime where the gauge coupling

is weak, g ≪ 1, but the number of colors is large, Nc ≫ 1, in such a way that the ‘t Hooft

coupling λ ≡ g2Nc (the relevant coupling for perturbation theory at large Nc) is large:

λ ≫ 1. The ‘deformation’ refers to the introduction of an effective infrared cutoff which

breaks down conformal symmetry and mimics confinement.

According to the AdS/CFT correspondence [11], the N = 4 SYM theory is admitted to

have a dual description in terms of the Type IIB string theory living in the 10-dimensional

AdS5 × S5 space-time, with the following metric:

ds2 =
u2

R2
(−dx2

0 + dx2
1 + dx2

2 + dx2
3) +

R2

u2
du2 + R2dΩ2

5 . (3.1)

In this equation, x0 and x = (x1, x2, x3) are the time and, respectively, three spatial

dimensions of ‘our’ physical Minkowski world, u is the AdS5 radial coordinate (0 ≤ u <

∞), to be below referred as ‘the 5th dimension’, and dΩ2
5 is the angular measure on S5.

Furthermore, R is the common radius of AdS5 and S5, and it is related to the string length

ls via the ‘t Hooft coupling of the dual gauge field theory: R = lsλ
1
4 = α′ 1

2 λ
1
4 , with α′ ≡ l2s

the Regge slope. The physical, 4-dimensional, space is identified with the boundary of

AdS5 at u → ∞, where the AdS5-metric becomes conformal to the standard Minkowski

metric ηµν . The string coupling constant gs and the gauge coupling g are related to each

other as gs = g2/4π = λ/4πNc, which shows that in the ‘strong coupling’ regime of interest

here (λ ≫ 1 but g ≪ 1), the string theory is weakly coupled and hence it can be treated

in a semi-classical approximation.

We have previously mentioned the ‘deformation’ of the N = 4 SYM theory which is

necessary to mimic confinement. In the dual string theory, this translates into a modifi-

cation of the metric at small u ∼ u0 ≡ ΛR2, where Λ is a parameter which sets the scale

of light hadrons (‘glueballs’). The precise way of modifying the geometry in the infrared

is an issue of debate which we do not enter. (As we shall see, the dominant behaviour at

high energy is insensitive to such details.) In what follows, we shall simply restrict the 5th

coordinate to values u ≥ u0 (in practice, we shall be mostly interested in u ≫ u0), and as-

sume that the spectrum of the supergravity theory includes states which are localized near

u = u0, corresponding to massive ‘glueballs’ on the gauge theory side. Note that, because

of the logarithmic nature of the metric in u (ds2
u ∝ du2/u2), massive ‘supergravity’ states

exhibit power-law decays at large u, to be better characterized later on.

To closely mimic the setup of DIS, we follow [15] and introduce a ‘photon’ as the gauge

boson associated with a gauged U(1) subgroup of the SU(4) R-symmetry. As for the target,

we employ a ‘supergravity’ glueball of mass ∼ Λ which originates from the Kaluza-Klein

decomposition of the 10 dimensional massless dilaton after compactification on S5. Still as

in ref. [15], we shall use indices M,N, . . . to denote all ten space-time dimensions, separating
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into µ, ν, . . . on the Minkowski boundary at u → ∞ (our physical space), m,n, . . . on AdS5,

and a, b, . . . on S5. Indices are raised or lowered in the standard way, using the metric GMN

which can be read off eq. (3.1): ds2 = GMNdxMdxN . It is understood that for quantities

living in the four-dimensional gauge theory (and hence also on the Minkowski boundary of

AdS5), the tensor operations are performed with the Minkowski metric ηµν = (−1, 1, 1, 1).

As standard in DIS, the structure functions are obtained from the imaginary part of

the forward Compton scattering amplitude

i

∫

d4x eiq·x〈P |T{Jµ(x)Jν(0)}|P 〉 , (3.2)

where Jµ(x) is the density of the R-current and |P 〉 denotes a (normalizable) glueball

state with 4-momentum Pµ. The hadronic matrix element under the integral will be

computed from semi-classical string theory, via the AdS/CFT correspondence. The recipe

is as follows:

The R-current at the Minkowski boundary (u → ∞) excites vector-like metric fluctu-

ations in the ‘bulk’ (i.e., at finite u ≥ u0):

δGma(xµ, u,Ω) = Am(xµ, u)va(Ω), (3.3)

where Ω denotes the angular coordinates on S5, Am(xµ, u) is a gauge boson field, and

va is the Killing vector on S5 corresponding to the gauged U(1) subgroup. At u → ∞,

the field Aµ(xµ,∞) can be identified as the physical photon which couples to the R-

current. This will be taken in the form Aµ(xµ,∞) = nµeiq·x, with space-like four-vector qµ:

Q2 ≡ qµqµ > 0. But inside the bulk, Am(xµ, u) should be better viewed as a gravitational

wave, as it describes a fluctuation in the metric tensor. For definiteness, we shall refer to

this field as the ‘R-boson’. This R-boson propagates into the bulk until it scatters off the

dilaton target — a supergravity state with wavefunction

Ψ(xµ, u,Ω) = eiP ·x Φ(u,Ω). (3.4)

Note that this is a plane wave with four-momentum Pµ in the four physical dimensions.

The Bjorken–x variable for DIS is defined in the usual way: x ≡ Q2/(2P ·q). Still as usual,

the high-energy limit (P → ∞ at fixed Q2) corresponds to small values for x (x ≪ 1).

As explained in refs. [15], the Regge behavior starts to be seen when 1/x ≫
√

λ where

the energy is high enough to create excited string intermediate states. To leading order

at large Nc, the string scattering can be computed at tree level, as the imaginary part of

the superstring Virasoro-Shapiro amplitude for graviton-dilaton scattering [23] (originally

calculated in flat space, and heuristically extended to curved space in [15]) convoluted with

the supergravity wavefunctions for the R-boson (Am) and the dilaton (Φ). The result

of [15] can be compactly written as

F2(x,Q2) = cα′ (QR)6

Λ2

∫

du

u

1

u4

(

K2
0 (QR2/u) + K2

1 (QR2/u)
)

(

1

x

)1+
α′∆2

2

Φ†Φ(u) , (3.5)

where we have absorbed in c a constant coming from the integration over S5, as well as

powers of λ. (For simplicity, we do not keep track of powers of λ in the prefactor. This
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is acceptable since we shall deal with an exponentially large factor e
√

λ. See below for

details.)

Let us discuss the various factors under the integral in eq. (3.5) one after the other:

(i) The modified Bessel functions K0,1 are a part of the ‘R-boson wavefunction’; that is,

they arise via the solution Am(xµ, u) to the supergravity equation of motion for the

metric perturbation induced by the R-current. This equation is Maxwell equation on

AdS5: DmFmn = 0, with Fmn = ∂mAn − ∂nAm and Dm the covariant derivative in

the AdS5 background. (Am(xµ, u) is the non-normalizable solution to this equation

corresponding to the boundary condition Aµ(xµ, u → ∞) = nµeiq·x.) For u smaller

than

uc ≡ QR2, (3.6)

the Bessel functions decays exponentially, meaning that a ‘photon’ with large Q2

cannot penetrate deeply inside the bulk: the larger Q2 is, the closer the photon

remains near the boundary. Since, on the other hand, the inverse power of u manifest

in eq. (3.5) favors small values of u, it is clear that the integral there is controlled by

u ∼ uc.

Remarkably, the R-boson wavefunction involves the same Bessel functions as the

wavefunction describing the qq̄ excitation of a virtual photon in pQCD (cf. eq. (2.4)).

This suggests a kind of ‘duality’ between the dipole size r in pQCD and the 5th

dimension u in AdS5, via the correspondence r ↔ R2/u. We shall identify further

aspects of this correspondence later on.

(ii) The dilaton wavefunction Φ(u) is peaked around u ∼ u0 and decays at large u like

Φ ∼ u−∆, where ∆ is the conformal dimension of the operator which creates this

state. For glueballs corresponding to supergravity modes, ∆ is a number of O(1)

which is strictly larger than 2. In the formal analogy to pQCD, the probability

density |Φ(u)|2 ∼ u−2∆ corresponds to the density n(r) of dipoles inside the onium,

cf. eq. (2.6). Note that the overlap between the R-boson and the dilaton wavefunction

scales like u−2∆
c ∼ (1/Q2)∆, and hence it rapidly dies away when increasing Q2.

(iii) The last comment shows that DIS would be strongly suppressed at large Q2 if there

was not for the non-locality hidden in the middle factor, (1/x)1+(α′/2)∆2 , which de-

scribes the imaginary part associated with one string exchange in the curved, AdS5,

space. In less formal notations, the action of this operator can be written as (with

τ ≡ ln(1/x))

(

1

x

)1+
α′∆2

2

Φ†Φ(u) ≡ 1

x

∫

du′ 〈u|e
α′τ∆2

2 |u′〉 |Φ(u′)|2 . (3.7)

Notice the dominant energy behavior F2(x) ∼ 1/x at small x: this is the hallmark

of the graviton exchange in the t-channel. (At high energy, the exchanged string is

dominated by its graviton component; see section 4.2.) Furthermore, the operator
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∆2 in the exponent is the Laplacian describing diffusion in the 5th dimension, for the

spin-2 exchanged graviton. This operator appears because of the finite momentum

transfer in the u-direction, although the momentum transfer in the physical four

dimensions is strictly zero [15, 16]. Explicitly, this operator reads

∆2 ≡
( u

R

)2
∇2

0

( u

R

)−2
=

4

R2
(∂2

ρ − 1) (3.8)

where ∇2
0 is the scalar Laplacian on AdS5 and we have defined ρ ≡ ln(u2/u2

0). By

also using the integral representation of the ‘heat kernel’ exp{∂2
ρ}, one arrives at the

following representation for the expression in eq. (3.7):

eτ+2α′τ(∂2
ρ−1) Φ†Φ(ρ) =

∫

dρ′
∫

dν

2π
eiν(ρ−ρ′) e

τ− 2τ√
λ
(ν2+1) |Φ(ρ′)|2

=
eω0τ

2
√

πDτ

∫ ∞

0
dρ′ e

−(ρ−ρ′)2
4Dτ e−∆ρ′ , (3.9)

where we have used R2/α′ =
√

λ and introduced

ω0 ≡ 1 − 2√
λ

, and D ≡ 2√
λ

. (3.10)

eq. (3.9) result shows a Pomeron-like increase with τ , with an intercept 1 + ω0 =

2 − 2/
√

λ which is slightly shifted from 2 due to the curvature of AdS5 [14 – 16].

One should notice the formal similarity between the stringy ‘Pomeron’ amplitude in

eq. (3.9) and the cross-section (2.15) which describes the BFKL Pomeron in pQCD. In

this analogy, the fifth coordinate u plays, once again, the role of the inverse dipole size 1/r.

Like for the BFKL Pomeron, the non-locality associated with the single Pomeron exchange

in AdS5 is diffusive in ρ ∼ ln u2, with the rapidity τ playing the role of the evolution

‘time’; accordingly, its effect becomes important only for very high energies, exponentially

large in the relevant coupling. Namely, the diffusive radius Dτ in eq. (3.9) becomes of

O(1) when τ ∼
√

λ, or 1/x ∼ e
√

λ . For comparison, the corresponding estimate in pQCD

reads τ ∼ 1/ᾱs, or 1/x ∼ e1/ᾱs , which at a first sight may look as an astronomically high

energy, but in fact is is not: ᾱs is not that small in real world (ᾱs = 0.2 ÷ 0.4 for the

high-energy experiments), and rapidities of order 1/ᾱs or even larger are within the reach

of the present-day accelerators.

Up to an overall factor of O(1/N2
c ) that we shall shortly comment on, eq. (3.9) can be

viewed as the string theory analog of the dipole-onium scattering amplitude in pQCD, in

the BFKL approximation. The dipole (a qq̄ excitation of the virtual photon with a given

transverse size r) is now replaced by the R-boson Am(u) (the metric fluctuation induced

by the R-current at a given position u along the 5th dimension), and the dilaton plays the

same role as the onium — the corresponding wavefunctions are localized near the respective

‘infrared’ cutoff (u ∼ u0 for the dilaton and, respectively, r ∼ R0 for the onium) and they

exhibit power-law tails with exponent ∆ in the ‘ultraviolet’ (large u and, respectively, small

r). At this stage, it would be straightforward to repeat the analysis in section 2 (mutatis

– 17 –



J
H
E
P
0
1
(
2
0
0
8
)
0
2
6

mutandis) and thus determine the saturation momentum for the dilaton. However, before

doing that, it is necessary to better understand the validity limits of the approximation in

eq. (3.9). We shall do that in section 3.2, where we shall discover that, in the string theory

context, eq. (3.9) is less general than its analog in pQCD — it holds only within a limited

range of values for τ and ρ. These limitations have not been properly recognized in the

previous literature.

We conclude this subsection with a discussion of the interplay between the large–Nc

limit and the high-energy limit, which turns out to be quite subtle, for both weak and strong

coupling. The tree-level string amplitude (corresponding to single Pomeron exchange) is

of order g2
s ∝ 1/N2

c . In eq. (3.5) this factor 1/N2
c has been canceled by a factor N2

c implicit

in the R-current. (The latter receives contributions from all the fields in the N = 4 SYM

theory which are charged under the R-symmetry; these fields are scalars and Weyl fermions

in the adjoint representation of the colour group, hence they have N2
c − 1 ≈ N2

c degrees of

freedom.)

This is similar to what happens in QCD at weak coupling: the BFKL result (2.10)

involves an overall factor α2
s ∼ ᾱ2

s/N
2
c which is partially canceled in F2 by a factor Nc

coming from the photon wavefunction, eq. (2.4). Yet, the unitarity corrections apply

directly to the dipole-dipole scattering (and not only to F2), hence they become important

when the small factor 1/N2
c manifest in eqs. (2.10) or (2.15) gets compensated by the

energy evolution. As discussed below eq. (2.15), for the BFKL Pomeron this happens at a

critical rapidity τcr ∼ (1/ᾱs) ln(N2
c /ᾱ2

s). For τ >∼ τcr, multiple Pomeron exchanges become

important and ensure unitarization.

Returning to strong coupling and the dual string theory, there the multiple Pomeron

exchanges correspond to higher genus string amplitudes which are suppressed by powers

of 1/N2
c . Hence, unitarity corrections become important at τcr ∼ lnN2

c . We thus see that,

in the strict large–Nc limit (Nc → ∞ at fixed energy), there is no issue of unitarity: higher

loop amplitudes, being proportional to inverse powers of 1/N2
c , can be made arbitrarily

small even at very high energy. On the other hand, when Nc is large but finite, the single

Pomeron exchange has only a limited applicability, and beyond that one has to sum over

an infinite number of multi-loop diagrams corresponding to arbitrarily many Pomerons

exchanged in the t-channel. What is however different from the situation at weak coupling

is that, for generic values of τ and ρ ∼ ln Q2, the amplitude in the vicinity of the unitarity

line is not dominated by the single Pomeron exchange anymore. This is why, in general, the

saturation line cannot be inferred from the previous formulæ in this section, but requires

some further analysis.

It will be our goal in what follows to determine the onset of the various types of

unitarity corrections in the parameter space of τ and ρ. To have access to the full structure

of the high-energy ‘phase diagram’, we shall assume that N2
c > e

√
λ — so that diffusion

effects (which, we recall, require a rapidity evolution τ >∼
√

λ) become important before

unitarization. But the opposite case e
√

λ ≪ N2
c will be included too in our results, as a

special limit.
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3.2 Limit of the single Pomeron approximation: a lesson from a sum rule

The fundamental difference between the physics of unitarization at weak and, respectively,

strong coupling comes from the fact that, in the strongly-coupled gauge theories with a

gravity dual, the high-energy scattering amplitude is predominantly real (it starts as one

graviton exchange), while at weak coupling it is predominantly imaginary (in both QCD

and N = 4 SYM theory). Of course, the large real part at strong coupling is irrelevant for

the total cross section so long as the latter is computed at tree-level. But at higher loop

level, say, starting with two-graviton exchange, this gives rise to an imaginary part via

diffractive processes — i.e., processes where the final states (string excitations or higher

Kaluza-Klein modes) are separated by a rapidity gap. On the other hand, the imaginary

part of the tree-level amplitude (3.5) is associated with the inelastic production of excited

string states, with no rapidity gap.2 It turns out that, when ρ ∼ ln Q2 is larger than

a certain critical value, the diffractive processes dominate over the inelastic ones in the

approach towards unitarity. We shall discuss this issue in detail in the next section, but

for the time being let us proceed naively and study the onset of unitarity corrections

on the basis of the tree-level results in the previous subsection, which include the inelastic

processes alone. This will drive us into a paradox which will point out towards the necessity

to include the additional, diffractive, contributions.

After also including the essential factor 1/N2
c , the forward scattering amplitude (3.9)

for the R-boson-dilaton can be more suggestively rewritten as (compare to eq. (2.5))

T (ρ, τ) =

∫ ∞

0
dρ′ T0(ρ, ρ′, τ) |Φ(ρ′)|2 (3.11)

where |Φ(ρ′)|2 = e−∆ρ′ and

T0(ρ, ρ′, τ) ≡ 1

N2
c

eω0τ

2
√

πDτ
e−

(ρ−ρ′)2
4Dτ (3.12)

represents the elementary scattering amplitude between states localized around ρ and ρ′ in

the single-Pomeron-exchange approximation (the analog of the dipole-dipole amplitude in

section 2). The unitarity bound on this elementary amplitude determines the saturation

line for a dilaton state localized at ρ′; namely, the condition T0(ρ, ρ′, τ) ∼ 1 for ρ = ρs(τ, ρ
′)

implies

ρs(τ, ρ
′) = ρ′ + ρs0(τ), ρs0(τ) ≡

√

4Dτ(ω0τ − ln N2
c ) , (3.13)

where ρs0(τ) refers to a dilaton state localized at u ∼ u0. (As in section 2, we neglect the

effects of the slowly varying prefactor 1/(2
√

πDτ) in eq. (3.12).)

Eq. (3.13) applies for τ > τcr = (1/ω0) ln N2
c and should be compared to the corre-

sponding result, eq. (2.23), in pQCD: the similarity between these two results would become

even closer if it was possible to extrapolate eq. (3.13) to large rapidities τ ≫ τcr, where

2Strictly speaking, the DIS process is always inelastic, since the virtual photon cannot appear in the

final state. Here, we use the word ‘inelastic’ to suggestively distinguish the final states without rapidity

gap from the diffractive ones, which exhibit such a gap.
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ln N2
c could be expanded out from the square root. However, as we shall later discover,

such an extrapolation would be incorrect: in reality, eq. (3.13) applies only within a limited

range in τ above τcr, namely, within the window τcr < τ < τc, with τc − τcr ≃ 2 ln N2
c /

√
λ

(see eq. (3.28) below).

This limitation is in turn related to a failure of our formula (3.12) for the elementary

amplitude, which becomes incomplete at high energies and for large values of ρ. To illus-

trate this failure, we shall show that eq. (3.12) leads to an unphysical result when used to

evaluate the following moment of the structure function

M(Q2) ≡
∫ 1

0
dxF2(x,Q2) =

∫ ∞

0
dτ e−τF2(τ,Q

2) . (3.14)

By energy-momentum conservation, this moment should be independent of Q2; however,

as we shall demonstrate in what follows, the (properly unitarized) amplitude for single

Pomeron exchange, eq. (3.12), fails to saturate the sum-rule at large values of Q2.

Within the present approximations, the structure function F2 of the dilaton is given by

eq. (3.5). To avoid unnecessary complications with the R-boson wavefunction, we shall here

restrict ourselves to the structure function that would be measured by a single R-boson

state localized at u (the analog of a single dipole projectile with fixed size r in pQCD).

The coordinate u fixes the resolution scale, u2 ∝ Q2 (cf. eq. (3.6)), hence F2(τ,Q
2) can be

evaluated as

F2(τ,Q
2) ∼ N2

c eρ T (ρ, τ) (3.15)

(up to an irrelevant prefactor), with ρ ≡ ln(u2/u2
0). The factor of N2

c accounts for the

color degrees of freedom of the fields contributing to the R-current and eρ accounts for the

factor Q2 in the relation (2.2) between F2 and the ‘dipole’ (here, R-boson) cross-section.

We start by evaluating T (ρ, τ) in the single-Pomeron approximation. This is given by

eq. (3.11) with the elementary amplitude from eq. (3.12) corrected for unitarity violations.

That is, for τ > τcr, we shall write (compare to eq. (2.24) in pQCD)

T (ρ, τ) ≃
ρ−ρs0
∫

0

dρ′
1

N2
c

eω0τ e−
(ρ−ρ′)2

4Dτ e−∆ρ′ +

∞
∫

ρ−ρs0

dρ′ e−∆ρ′ . (3.16)

As in section 2, this representation is valid only in the regime where the amplitude is weak,

T (ρ, τ) ≪ 1, but it can be used to approach the unitarity limit T ∼ 1, and thus compute

the dilaton saturation momentum. The first integral in the r.h.s. of eq. (3.16) involves the

dilaton components living at relatively small values of u, which scatter only weakly off the

incoming R-boson. The second integral refers to the components at larger values of u, which

undergo strong scattering, but are exponentially suppressed by the dilaton wavefunction.

(Of course, when τ ≤ τcr only the first integral would be present.) Accordingly, the overall

amplitude is dominated by the components living near the infrared cutoff, so like in pQCD.

Indeed, the integrand in the first integral is peaked at ρ′ = ρ − 2∆Dτ ; hence, for

ρ < 2∆Dτ , that integral is dominated by its lower limit ρ′ = 0, which yields

T (ρ, τ) ∼ 1

N2
c

eω0τ e−
ρ2

4Dτ +
1

∆
e−∆(ρ−ρs0) . (3.17)
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This amplitude becomes of O(1) when ρ ≃ ρs0(τ), meaning that the saturation momentum

of the dilaton coincides with that of its component located at u ≃ u0: ρs(τ) = ρs0(τ).

However, the above calculation of ρs is consistent only so long as ρs < 2∆Dτ , meaning

ρs0 < 2∆Dτ , which in turn requires τ < τd, with

τd ≡ ln N2
c

ω0 − D∆2
=

ln N2
c

1 − (2/
√

λ)(∆2 + 1)
. (3.18)

When τ < τd, one can check that the second term in eq. (3.17) is exponentially suppressed

next to the first one, and therefore

T (ρ, τ) ≃ 1

N2
c

eω0τ e−
ρ2

4Dτ when τ < τd and ρ < 2∆Dτ . (3.19)

Thus, in this regime, the scattering is controlled by the component of the dilaton living near

the IR cutoff u0 = ΛR2, in full analogy to what happens in pQCD (recall the discussion

after eq. (2.26)). In particular, within the restricted interval τcr < τ < τd, eq. (3.19) can

be rewritten in a form which resembles the expansion of the QCD amplitude near the

saturation line (compare to eq. (2.27))

T (ρ, τ) ≃ e−(1−γ)(ρ−ρs) e−
(ρ−ρs)2

4Dτ when τcr < τ < τd and ρs < ρ < 2∆Dτ ,

(3.20)

with the ‘anomalous dimension’ γ(τ) given by

1 − γ(τ) =
ρs0(τ)

2Dτ
=

√

ω0τ − ln N2
c

Dτ
. (3.21)

Note however that, even for ρ close to ρs, where the diffusion term can be ignored in

eq. (3.20), this amplitude does not show geometric scaling (unlike in pQCD), because

the τ -dependence of the ‘anomalous dimension’ (3.21) cannot be neglected within the

corresponding validity range. This difference can be understood as follows: in pQCD,

expressions like eq. (2.27) are valid up to arbitrarily large values of τ , much larger than

the critical value τcr ∼ (1/ᾱs) ln(1/α2
s) for the onset of saturation; then properties like

geometric scaling emerge via asymptotic expansions valid at τ ≫ τcr. By contrast, in the

present context, eq. (3.20) is valid only within a limited range of values for τ above τcr,

where such asymptotic expansions are not possible anymore.

The case where ρ > 2∆Dτ can be similarly treated. For τ < τd, the saddle point

ρ′ = ρ − 2∆Dτ lies within the integration range and gives the dominant contribution to

the overall amplitude:

T (ρ, τ) ≃ 1

N2
c

e(ω0+D∆2)τ−∆ρ when τ < τd and ρ > 2∆Dτ , (3.22)

in agreement with a corresponding result in ref. [15]. For τ > τd, eq. (3.16) would predict

T (ρ, τ) ∼ e−∆(ρ−ρs0), but this result cannot be trusted anymore since, as we shall shortly

argue, eq. (3.16) is not a reliable approximation for such large values of ρ and τ .
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To see that, consider the prediction of eq. (3.16) for the sum-rule (3.14). When com-

puting the integral there, the amplitude (3.16) can be replaced by its simpler expression

in eq. (3.19) (this will be checked later). To also account for the unitarity bound, we shall

write

T (ρ, τ) ≃







1

N2
c

eω0τ e−
ρ2

4Dτ for τ < τs(ρ)

1 for τ >∼ τs(ρ) .

(3.23)

Here, τs(ρ) is the dilaton saturation line expressed as a function of ρ (the ‘inverse’ of the

function ρs(τ)); that is, τs(ρ) is the rapidity at which the unitarity corrections become

important on the resolution scale fixed by ρ. Using eq. (3.13), one immediately finds

τs(ρ) =
ln N2

c

2ω0
+

√

(

ln N2
c

2ω0

)2

+
ρ2

4Dω0
. (3.24)

After using (3.23) together with the estimate (3.15) for F2, the integral in eq. (3.14) becomes

M(ρ) ∼ eρ

∫ τs

0
dτ e−(1−ω0)τ e−

ρ2

4Dτ + N2
c eρ

∫ ∞

τs

dτ e−τ ≡ M1 + M2 . (3.25)

The second integral is trivially performed, and its result is found to rapidly vanish at large

ρ:

M2(ρ) ∼ N2
c eρ e−τs(ρ) −→ exp

{

−λ1/4

√
8

ρ

}

for ρ → ∞. (3.26)

Hence, the only way to satisfy the sum-rule would be via the first integral, M1. The

corresponding integrand is strongly peaked near the saddle point at

τ∗(ρ) =

√
λ

4
ρ . (3.27)

Note that, for τ ∼ τ∗, we have 2∆Dτ ∼ ∆ρ > ρ, which justifies our use of the simplified

expression (3.19) for the single-Pomeron amplitude in eq. (3.16).

So long as τ∗(ρ) < τs(ρ), this saddle point lies inside the integration domain and can

be used to estimate the integral. The ensuing result for M1(ρ) is independent of ρ, showing

that the sum-rule is saturated by the single-Pomeron exchange, as it should for this to

be a consistent approximation. This is the situation considered in ref. [15], within the

framework of the strict large–Nc limit. Note, however, that in that limit, the saturation

rapidity τs was effectively pushed up to infinity and unitarity has never been an issue.3

However, when Nc is kept finite (although large), unitarity is an issue, which modifies,

in particular, the previous calculation of M1(ρ) at large values of ρ. Namely, the function

τ∗(ρ) grows faster than τs(ρ), so the two curves cross each other at a point (see also figure 3)

(τc, ρc) =

(

lnN2
c

1 − 4/
√

λ
,
4 ln N2

c√
λ − 4

)

. (3.28)

3This is also the situation in pQCD, where the sum-rule (3.14) is dominated by relatively large values

of x ∼ O(1), hence its calculation is insensitive to unitarity corrections, or even to the BFKL evolution.
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Hence, when ρ > ρc, the saddle point (3.27) lies outside the integration range. Then, the

integral giving M1 is dominated by its upper cutoff at τ = τs(ρ), which however yields only

a tiny result, of the same order as M2 (since for τ ∼ τs(ρ), the amplitude (3.23) is O(1)).

Thus, for ρ > ρc the sum-rule is not saturated by the single Pomeron exchange any-

more, meaning that some new physical mechanism, which was missed by this approxi-

mation, should become important in this region. The above calculation gives us some

indications in that respect: We have already noticed that, when increasing ρ towards ρc,

the saddle point (3.27) approaches the saturation line (3.24), that it crosses exactly at

ρ = ρc. It is then reasonable to assume that, for ρ > ρc, the saddle point should remain

along the saturation line: τ∗(ρ) = τs(ρ). (One cannot have τ∗(ρ) > τs(ρ), since the integral

over τ in the saturation region is always dominated by its lower limit τs(ρ), as manifest

on eq. (3.25).) If so, then the sum-rule at large ρ can be estimated as in eq. (3.26):

M(ρ) ∼ N2
c exp{ρ − τs(ρ)}. This estimate, together with the condition M(ρ) = O(1),

allows us to predict the form of the saturation line at large ρ > ρc :

τs(ρ) ≃ ρ + ln N2
c , or ρs(τ) ≃ τ − lnN2

c . (3.29)

This discussion suggests that the complete saturation line should actually involve two

branches, given by eq. (3.24) for ρ < ρc and, respectively, eq. (3.29) for ρ > ρc. Remark-

ably, these two branches appear to continuously match with each other at the transition

point (3.28): both their values and their first derivatives coincide at this point (see figure 3).

What should be the unitarization mechanism responsible for the saturation line in

eq. (3.29) ? Once again, the previous sum-rule calculation gives us an indication in that

sense: Along the line which controls the sum-rule, the energy dependence of the R-boson-

dilaton amplitude is precisely that of the massless graviton (not Pomeron) exchange:

eω0τ e
−ρ2

4Dτ = e(1−4/
√

λ)τ = eτ e−ρ . (3.30)

(We have repeatedly used τ = (
√

λ/4)ρ, cf. eq. (3.27).) Eq. (3.30) is indeed the same as

the propagator of a massless graviton. This result is quite suggestive: The shift of the

Pomeron intercept 1 → ω0 in eq. (3.9) can be understood as a result of gravitons acquiring

a mass due to the curvature of AdS5 (see section 4.2 below for details). However, along the

line eq. (3.27), and in fact in the whole region on the right of this line as we shall see, the

presence of massless gravitons is inevitable. The graviton exchange is dominantly real and

much more non-local than the Pomeron exchange, which is non-local only due to diffusion.

However, double, or multiple, graviton exchanges can generate imaginary parts, via the

diffractive final states alluded to at the beginning of this subsection. As we shall explicitly

see later on, such multiple exchanges are indeed responsible for unitarization at ρ > ρc and

they produce the saturation line in eq. (3.29).

4. Mapping the high-energy ‘phase diagram’

Motivated by the above considerations, in this section we shall study the Pomeron propaga-

tor in the AdS5 geometry, with due attention to both its real and its imaginary part. This
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will allow us to follow the transition between a genuine Pomeron behaviour at relatively

low values of ρ, where the curvature effects are important and give rise to an imaginary

part and to diffusion, and a massless graviton propagator at large ρ, which is long-ranged

and predominantly real. Then we shall explain how multiple graviton exchanges generate

an imaginary part via diffractive processes, and compute the corresponding saturation line.

As a preliminary, we shall make some comments on the anomalous dimension of twist-two

operators at strong coupling, which justify the use of the ‘diffusion approximation’ in the

approach towards the saturation line.

4.1 Anomalous dimension of twist-two operators in N = 4 SYM

The variable γ introduced in section 2 has the interpretation as the anomalous dimension

of the twist-two, spin–j gluonic operator

Tr[F+
µ (D+)j−2F+µ], (4.1)

with j analytically continued to non-integer values. (In the BFKL context one has j =

1 + χ(γ); see [37] for discussions on the anomalous dimension and the operator product

expansion in that framework.) Recall that the total dimension ∆(j) of the operator eq. (4.1)

is given by4

∆(j) = j + 2 − 2γ(j) . (4.2)

In the weak coupling expansion, γ ∼ O(αs), while the BFKL resummation gives a number

of O(1) (and comprised between 0 and 1/2; cf. section 2). On the other hand, for N = 4

SYM at strong ‘t Hooft coupling λ = g2Nc ≫ 1, the AdS/CFT correspondence predicts

that the twist-two operators with j 6= 2 receive a large, negative (in our conventions),

anomalous dimension. Specifically, ref. [39] has found

γ(j) ≈ −
√

λ

2π
ln

j√
λ

, (4.3)

for j ≫
√

λ and, respectively,

γ(j) ≈ −
√

j

2
λ

1
4 , (4.4)

for 1 ≪ j ≪
√

λ. These results were obtained by computing the energy and the angular

momentum of a ‘folded’ closed string state rotating in the AdS5 space. When j ≪
√

λ, the

string is spinning in a small region compared with the radius R, while the case j ≫
√

λ

corresponds to a macroscopic string stretched over a distance larger than R.

Because of the large anomalous dimension for twist-two operators (excepting the energy

momentum tensor which has zero anomalous dimension γ(2) = 0), it has been argued in [15]

that the OPE in DIS at strong coupling must be considerably reorganized. The dominant

4This is the common definition of γ in the small–x literature, which differs by a factor −2 from the one

which is most often used in the literature. A yet different convention γ → 1 − γ is sometimes used.
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contribution comes from the ‘protected’ (i.e., non-renormalized), double-trace, operators

which create and annihilate the entire hadron of interest. These operators are nominally

higher-twist, but since their dimension is of order unity, their contribution is less suppressed

compared to the twist-two operators having |γ(j)| ≫ 1 for generic j 6= 2. Hence DIS at

moderate values of x can be pictured as a process where a virtual photon knocks off an

entire charged hadron — a drastically different picture from pQCD where a photon knocks

off partons inside the hadron.

While plausible in the Bjorken limit (Q2 → ∞ at fixed τ), this is no longer the case in

the Regge limit (τ → ∞ at fixed Q2). The important regime at high energy is j ∼ 2. Since

γ(2) = 0 exactly, γ(j) remains small in the vicinity of j = 2, and the twist-two operators

(analytically continued to complex values of j near j = 2) should still give the leading

contribution. Notably, refs. [38] and [16] arrived at the same expression for γ(j) in the

‘diffusion approximation’ from very different arguments. It is obtained as the solution to

j − j0 =
1

2
√

λ
(∆ − 2)2 =

1

2
√

λ
(j − 2γ(j))2 , (4.5)

where

j0 = 2 − 2√
λ

= 1 + ω0 , (4.6)

is the Pomeron intercept. Notice that the property γ(2) = 0 is indeed verified by the

solution to eq. (4.5). Some light on the origin of eq. (4.5) will be shed by the manipulations

in the next subsection. The inverse function j(γ) is approximately quadratic in γ and has

a minimum at

γ0 = 1 − 1√
λ

, (4.7)

with the minimum value j(γ0) = j0.

In general, the diffusion approximation is expected to be valid only in the vicinity of this

minimum, i.e., when γ ∼ γ0, j ∼ j0. Away from j = 2, one could a priori expect significant

nonlinear corrections to the right hand side of eq. (4.5). This is precisely what happens at

weak coupling, in the context of the BFKL equation, where the diffusion approximation

corresponding to γ0 = 1/2, cf. eq. (2.14), significantly deviates from the exact BFKL

characteristic function already when γ = γs ≃ 0.37. (This is why, in that context, it would

be incorrect to compute the saturation line by ‘unitarizing’ the amplitude (2.15) obtained

via the diffusion approximation).

However, it turns out that at strong coupling the diffusion approximation is much more

robust and has a much wider validity range than at weak coupling. For instance, one can

see that eq. (4.5) correctly reproduces the leading behavior, eq. (4.4), for large (but not

asymptotically large) j. (As a matter of fact, ref. [38] has determined the proportionality

constant in eq. (4.5) in such a way to match eq. (4.4). But the derivation of ref. [16] does

not rely on this matching.) Moreover, eq. (4.5) coincides with the well-known anomalous

dimension formula of a scalar field in AdS5

∆ = 2 +
√

4 + m2R2 , (4.8)
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where m is the mass of the state lying on the leading Regge trajectory (i.e., the highest

spin state in a given excitation level n = 0, 1, 2, . . . ):

m2 =
4n

α′ =
2(j − 2)

α′ . (4.9)

This shows that, in this strong-coupling context, the quadratic relation j ∼ γ2 (‘diffusion

approximation’) has its roots in the Regge behavior of string excited states ∆2 ∼ m2 ∼ j,

which is expected to hold in AdS5 for generic values of j up to j ∼
√

λ (see eq. (4.4)). This

range is large enough to cover all values of j and γ of interest at high energy, as we shall

later verify.

4.2 The Pomeron propagator

In eq. (3.5), the Virasoro-Shapiro formula in flat space was used rather heuristically [15].

For a more coherent discussion on both the real and the imaginary parts of the amplitude,

it is important to carefully derive this amplitude from the fundamental S-matrix in string

theory, starting with the operator representation of the latter in curved spacetime. Up to

a factor g2
s to be introduced in the final result, this representation reads [23, 16]

∫

d2z 〈V(∞)V(1)W(z)W(0)〉 ≈
∫

|z|<1
d2z

〈

V(∞)V(1)zL0−2z̄L̃0−2W(1)W(0)
〉

=

〈

V(∞)V(1)
δL0,L̃0

L0 + L̃0 − 2
W(1)W(0)

〉

. (4.10)

Here, V ’s and W ’s are the vertex operators corresponding to dilatons and, respectively,

gauge bosons in the (0, 0) picture, and the integration is over the string world-sheet with

spherical topology. The average is understood in the sense of the string path integral,

which involves an integral over the zero modes and a path integral over the nonzero ones.

Furthermore, L0 and L̃0 are the right– and left-moving Virasoro operators which generate

the scale transformations on the world-sheet. The kernel δL0,L̃0
/(L0 + L̃0 − 2) in the last

expression can be recognized as the propagator of the closed string exchanged in the t-

channel.

One can diagonalize the operators L0 and L̃0 by inserting a complete set of string

states — the ‘Pomeron states’ —, which are the states exchanged in the t-channel at high-

energy [16]. To that aim, one inserts the identity as a sum over the respective projection

operators

1 =
∑

j

∫

dν

2π
| V−

j,−ν〉〈V+
j,ν| −→

∫

C

dj

2i

1 + e−iπj

sin πj

∫

dν

2π
| V−

j,−ν〉〈V+
j,ν| , (4.11)

where the sum runs over all the positive, even, values of the spin: j = 2, 4, . . ., corresponding

to the string states on the leading Regge trajectory in eq. (4.9). Alternatively, the sum over

j can be realized as an integration in the complex j-plane, as indicated in the r.h.s.; the

contour C encircles the positive part of the real axis and is conveniently deformed into a

contour L which runs parallel to the imaginary axis, on the left of all the poles at j > 0 (see
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figure 2 below). (More precisely, this contour deformation within the Sommerfeld-Watson

representation is truly an analytic continuation from the t-channel amplitude related to

the physical, s-channel, amplitude via crossing symmetry (t ↔ s); see, e.g., [40].)

In the equation above, V± is the ‘Pomeron vertex operator’ [16] which is dual to the

twist-two operator, eq. (4.1), of the gauge theory (see also [41]). For large u, it takes the

form

V±
j,ν ∼ U j−2−2iν(∂zX

±∂z̄X
±)

j
2 . (4.12)

Capital letters denote world-sheet fields, while lower case letters refer to their zero modes.

Also, light-coordinates are defined in the standard way: X± = (X0 ± X3)/
√

2, with the

collision axis taken along X3. For what follows it is useful to notice that the vertex operators

associated with the dilaton (V) and the R-boson (W) admit representations similar to that

in eq. (4.12), but with the U -factor replaced by the corresponding wavefunction — Ψ(U)

in the case of the dilaton and, respectively, Am(U) for the R-boson.

The operator (4.12) has total dimension ∆ = 2 + 2iν; together with eq. (4.2), this

implies the following anomalous dimension:

γ =
j

2
− iν , (4.13)

which appears to be different from the one usually associated with a leading-twist operator

in the diffusion approximation, cf. eq. (2.13). Let us open here a parenthesis to explain

this discrepancy: in the leading logarithmic approximation used throughout section 2, the

reference scale of the logarithm τ = ln s is ambiguous and usually taken to be a product of

the two external scales. This ambiguity is resolved in the next-to-leading log approximation

(NLLA) where γ is shifted in the following way [2]

(

s

QΛ

)j−1 (

Q2

Λ2

)
1
2
−iν

=

(

s

Q2

)j−1 (

Q2

Λ2

)

j
2
−iν

, (4.14)

to ensure that the Pomeron behaviour (s/Q2)j−1 matches with the definition of the

Bjorken–x variable in DIS (at high energy).

The action of L0 on the Pomeron vertex operator has been evaluated for j ≈ 2 [16] as

L0V±
j,ν = L̃0V±

j,ν =

(

j

2
− α

4
∆2

j

)

V±
j,ν =

(

j

2
+

ν2 + 1√
λ

)

V±
j,ν , (4.15)

where (c.f. eq. (3.8))

∆j ≡
(

U

R

)j

∇2
0

(

U

R

)−j

(4.16)

The ν-integral (or the j-integral) sets L0 = L̃0 = 1, which after also using eqs. (4.13)–(4.15)

is recognized as the previous condition (4.5). So, eq. (4.5) simply states that V± is a (1,1)

tensor on the world-sheet in the curved background of AdS5 [42].
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We are now prepared to evaluate the string amplitude in eq. (4.10) in the semi-classical

approximation. After using eqs. (4.11) and (4.15), one finds

〈

V(∞)V(1)
δL0,L̃0

L0 + L̃0 − 2
W(1)W(0)

〉

= (4.17)

=

∫

dj dν

4πi

1 + e−iπj

sinπj

1

j − j0 + 2ν2√
λ

〈V(∞)V(1)V−
j,−ν〉〈V+

j,νW(1)W(0)〉 .

When evaluating expectation values in the semi-classical limit, one can replace an operator

F (U) on the world-sheet with its value F (u) at position u (the zero mode U). Besides,

the path integral over U reduces to the ordinary integral over u, with the appropriate,

invariant, measure. Since the string propagator in eq. (4.17) is non-local in u, some care is

needed when constructing the measure. Namely, in the decomposition of unity, eq. (4.11),

we need to insert the vertex operators at different positions u and u′. The appropriate

decomposition reads then

1 =

∫

L

dj

2i

1 + e−iπj

sin πj

∫

dν

2π

∫

du′

R

√
−G′ (G′+−)j | V−

j,−ν(u
′)〉〈V+

j,ν(u)| , (4.18)

where G is the determinant of the AdS5 metric Gmn, and G+− is the respective metric

component; eq. (3.1) implies G+− = R2/u2 and
√
−G = (u/R)3. Eq. (4.18) follows from

the following decomposition of the δ-function, which can be easily checked:

1 =

∫

du′ δ(u − u′) =

∫

du′

R

√
−G′(G′+−)j

∫

dν

2π

(

u′

R

)j−2+2iν
( u

R

)j−2−2iν
. (4.19)

One can now insert the explicit expressions for the vertex operators in the u-representation

and then perform the integral over ν by deforming the contour in the complex plane. Using

the fact that u > u′ in DIS at large Q2 (recall that u ∼ Q, whereas u′ ∼ u0), we shall close

the contour in the lower half plane, and thus pick up the pole at

ν(j) = −i

√√
λ

2
(j − j0). (4.20)

This gives

∫

du
√
−G

∫

dj

2i

1 + e−iπj

sin πj

(α′
effs)j√
j − j0

×
∫

du′√−G′(G′+−)jΦ†Φ(u′)u′j−2+2iν(j)uj−2−2iν(j)Am(u, q)Am(u,−q) + · · · ,

=

∫

dj

2i

1 + e−iπj

sin πj

eτj

√
j − j0

∫

du

u
u4

∫

du′

u′ Φ†Φ(u′)

(

u′2

u2

)1−γ(j)

Am(u, q)Am(u,−q) + · · · ,

(4.21)

where the dots stay for terms which are subleading at high energy. The factor (cf. eq. (3.6))

(α′
effs)j =

(

α′R2s

u2

)j

∼
(

α′R2s

u2
c

)j

=

(

1√
λx

)j

∼ eτj , (4.22)
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arises after contraction with vertex operators which carry large momenta [16]. Apart from

the external wavefunctions, eq. (4.21) is symmetric under the exchange of u and u′ as it

should.

After including the factor g2
s ∼ 1/N2

c and substituting the solution of the Maxwell

equation for Am(u) [15], one can identify the forward scattering amplitude for the current-

dilaton scattering, whose imaginary part yields the F2 structure function: F2 ∝ N2
c Q2 Im T̃ .

[We use the notation T̃ for the complete scattering amplitude, including both the real and

the imaginary part; hence, T = Im T̃ .] One finds

T̃ (x,Q2) ≃ (QR)6

N2
c

∫

du

u

1

u4

(

K2
0 (QR2/u) + K2

1 (QR2/u)
)

×
∫

du′

u′ Φ†Φ(u′)
∫

dj

2i

1 + e−iπj

sin πj

eτ(j−1)

√
j − j0

(

u′2

u2

)1−γ(j)

. (4.23)

Eq. (4.23) exhibits ‘radial factorization’: it is expressed as a convolution in u of pieces which

can be recognized as wavefunctions for the R-boson and, respectively, the dilaton, and a

kernel which is by construction the Pomeron propagator in string theory — a sum over all

string states exchanged in the t-channel at high energy —, and which after multiplication by

g2
s plays the role of a scattering amplitude between states localized at u and u′. Clearly, this

u-factorization is the string counterpart of the ‘kT -factorization’ valid in the high-energy

regime at weak coupling (as exhibited, e.g., in eqs. (2.3) and (2.5)).

Let us concentrate on the elementary Pomeron amplitude, that we would like to com-

pare to its previous approximation in eq. (3.12). With our usual notation ρ ≡ ln(u2/u2
0),

this can be rewritten as

TP(ρ, ρ′, τ) =
1

N2
c

∫

L

dj

2i

1 + e−iπj

sin πj

eτ(j−1)

√
j − j0

exp







(ρ − ρ′)





j − 2

2
−

√√
λ

2
(j − j0)











,

(4.24)

where we have used eqs. (4.13) and (4.20) to explicit the function γ(j). The contour L

runs parallel to the imaginary j axis and crosses the real axis between the branch point at

j = j0 ≡ 2 − 2/
√

λ and the pole at j = 2 (see figure 2).

For sufficiently high energies, the integral can be evaluated by deforming the contour

L → L′, with L′ encircling the branch cut that ends at j0, as shown in figure 2. Alter-

natively, and more conveniently for our present purposes, one can use the saddle point

method. Namely, the integrand has a saddle point at

j∗ ≃ j0 +

√
λ(ρ − ρ′)2

8τ2
, (4.25)

where we have used τ ≫ ρ−ρ′, as appropriate at high energy. So long as
√

λ(ρ−ρ′)/4 < τ ,

this saddle point lies between j0 and 2, and then the use of the saddle point approximation

is indeed justified. By also using e−iπj0 ≈ 1 + 2πi/
√

λ, one thus finds that the high-energy
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Figure 2: The analytic structure of the integrand in eq. (4.24) in the complex j plane, together

with various contours used when evaluating the integral.

amplitude develops an imaginary part5 TP ≡ Im T̃P, with

TP(ρ, ρ′, τ) ≈ 1

N2
c

eω0τ e−(1−γ0)(ρ−ρ′) e−
(ρ−ρ′)2

4Dτ , (4.26)

where ω0 = 1 − 2/
√

λ, γ0 = 1 − 1/
√

λ, and D = 2/
√

λ.

Eq. (4.26) coincides with the formula previously used in section 3, cf. eqs. (3.9)

or (3.12), up to a factor e−(1−γ0)ρ =
(

u′2/u2
)1/

√
λ

. This additional factor has the same

origin as the factor (r2/r′2)1/2 in the BFKL case, eq. (2.15) — namely, is reflects the

high-energy ‘anomalous dimension’ —, but it is less important here because the anomalous

dimension γ0 is close to one (in contrast to the BFKL case where γ0 = 1/2). And indeed,

by inspection of eq. (4.26), one can check that the additional term (1−γ0)(ρ − ρ′) in the

exponent remains negligible so long as ρ− ρ′ ≪ τ , and hence it cannot affect our previous

conclusions in section 3.2. Note also that, in this high-energy approximation, the graviton

pole ∼ 1/t is absent in the real part of the string amplitude — in contrast to what happens

in flat space —, because of the shift in the Pomeron intercept by the space-time curvature:

sin πj0 6= 0.

However, the graviton pole reappears when moving to sufficiently large values of ρ (for

a given τ), as we explain now. Indeed, when

√
λ

4
(ρ − ρ′) > τ , (4.27)

the saddle point j∗ exceeds 2, and then one has to deform the contour from C to C ′ (see

5The Virasoro-Shapiro formula in flat space also gives an imaginary part in a similar manner.

e−iπα′t/2/t ≈ 1/t − iπα′/2. This is how eq. (3.5) was actually derived.
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figure 2), in order to separately evaluate the pole of (1/ sin πj) at j = 2. This leads to

T̃P(ρ, ρ′, τ) ≈ eτ

N2
c

e−(ρ−ρ′) +
1

N2
c

∫

C′

dj

2i

1 + e−iπj

sin πj

e(j−1)τ

√
j − j0

e−(1−γ(j))(ρ−ρ′) . (4.28)

The first, purely real, term ∝ eτ (u′2/u2) is recognized as the propagator of the elementary,

massless, graviton in AdS5. For large τ and ρ (such that the condition (4.27) is satisfied),

this pole term dominates over the remaining contour integral. Indeed, the function f(j) ≡
(j − 1)τ + γ(j)(ρ − ρ′) obeys f(2) = τ , f ′(j∗) = 0, and f ′(j) < 0 for any real j within the

interval 2 ≤ j < j∗. Hence, whenever (4.27) is satisfied, one can choose the contour C ′ (see

figure 2) to cross the real axis at some j1 with 2 < j1 < j∗, and then Re f(j) < τ for any

j along C ′.

Thus for high energy and sufficiently large ρ, the ‘Pomeron’ exchange is dominated

by the elementary graviton and the amplitude is predominantly real. Since the graviton

propagator is very non-local in u, it can connect the large distance between u ∼ QR2 and

u′ ∼ ΛR2 without much suppression. Accordingly, with increasing τ , the corresponding

amplitude becomes of O(1) relatively fast (much faster than for the diffusive Pomeron in

eq. (4.26) !), namely when

τ = ρ − ρ′ + ln N2
c , (4.29)

in agreement with eq. (3.29). Of course, being real, this single graviton exchange does not

contribute to F2. Yet, multiple such exchanges can do so, as we shall shortly explain.

To summarize, the single-Pomeron-exchange approximation to F2(x,Q2) is expected to

be a legitimate approximation at high energy and strong coupling so long as ρ ≡ ln Q2/Λ2 <

4τ/
√

λ and for rapidities τ < τs(ρ), with the saturation rapidity τs(ρ) given by eq. (3.24).

The two delimitating curves intersect with each other at the point (ρc, τc), eq. (3.28). This

is also the point where starts the large–ρ branch of the saturation line, cf. eqs. (3.29)

or (4.29), to be further discussed in the next subsection.

4.3 Saturation line from multiple graviton exchanges

The previous analysis shows that the physics of unitarization in DIS at strong coupling and

relatively large Q2 is conceptually different from what happens either at weak coupling,

or at strong coupling but for lower values of Q2. In the last two cases, which are the

more standard ones, the black disk limit for the scattering amplitude is approached by

unitarizing the single Pomeron exchange, which in turn requires energies which are high

enough for the two scales involved in the collision to be joint by diffusion. But for strong

coupling and large Q2, the single Pomeron exchange is unable to saturate the energy-

momentum sum rule (3.14)— essentially, because its imaginary part decays too fast at

large Q2. However, precisely in that large–Q2 region, the full Pomeron propagator in string

theory develops an additional, real, part, which describes elementary graviton exchanges

and has the potential to generate stronger interactions, since very non-local in u. This

new component can contribute to the DIS structure functions too, but only via multiple

scattering. In this subsection, we would like to argue (without performing a fully fledged
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calculation of multiple scattering in AdS5) that multiple graviton exchanges dominate

indeed at high energy and large Q2 (in the vicinity of the saturation line) and, in particular,

they saturate the sum rule in the way already suggested after eq. (3.26).

The presence of a large real part in the Pomeron propagator describing the massless

graviton exchange is a common feature in string theories, and hence also in gauge theories

with a gravity dual. Multiple scattering in such theories is described by multi-loop dia-

grams, and at each order of this loop expansion the dominant contribution is provided by

the exchange of n gravitons (for a (n−1)-loop amplitude). It is well-known that in flat

space such higher loop terms exponentiate in the eikonal approximation [43, 12], and the

same was recently shown to hold for high energy scattering in AdS5 [18, 17]. The eikonal

approximation breaks down at very small impact parameters and/or at extremely high

energies (see below). In a string dual description of DIS at strong coupling, the impact pa-

rameter in the fifth dimension is large u/u′ ∼ Q/Λ, and therefore the eikonal resummation

is expected to work reasonably well.

In general, the exponentiation is done in the three-dimensional impact parameter space

spanned by the radial coordinate u and the two-dimensional, physical, impact parameter ~b

(neglecting nonlocality on S5), whereas our previous formulæ, like eq. (4.24), are already in-

tegrated over ~b. While it is possible to undo this integral and analyze the three-dimensional

propagator following [18, 17], one may anticipate, following the example of QCD at weak

coupling (cf. section 2; see also ref. [44]), that a simplification occurs for relatively central

impact parameters, b ≪ 1/Λ. DIS is characterized by the large resolution scale Q2 ≫ Λ2

which determines the size of the ‘active’ region in the transverse space. Hence, so long as

b ≪ 1/Λ one can neglect edge effects and work with scattering amplitudes averaged over

b, so like eq. (4.24).

In the present context, the eikonal approximation amounts to exponentiating the tree-

level ‘Pomeron’ amplitude eq. (4.24), which thus becomes the phase shift in the S-matrix:

S = exp{iT̃P}. In the interesting domain at large ρ ≡ ln(Q2/Λ2), namely, ρ > 4τ/
√

λ, the

Pomeron amplitude is given by eq. (4.28) and has both real and imaginary parts.

The imaginary part describes ‘inelastic processes’ in which the final states are (gener-

ally massive) string excitations, as obtained by cutting through the Pomeron. This imag-

inary part can be evaluated in the saddle point approximation, with the result displayed

in eq. (4.26). By itself, this contribution would generate the saturation line in eqs. (3.13)

or (3.29), which however has been argued to be inconsistent at large ρ > ρc, in section 3.2.

The relevant contribution at large ρ is rather the one generated by the real part

of the phase-shift, that is, by the exponentiation of the elementary graviton exchange.

The corresponding imaginary part starts at the level of the two-graviton exchange, where

it describes, in particular, the cross-section for the elastic scattering between two states

localized at u and u′, respectively. Note however that, in the context of DIS, this process is

not truly elastic — rather, it is a particularly simple diffractive process, which contributes

to F2 —, because the incoming virtual photon (or R-current) does not appear in the final
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state. The amplitude for such a double graviton exchange is estimated as

T2g(ρ, ρ′, τ) ≈
[

eτ

N2
c

e−(ρ−ρ′)

]2

, (4.30)

and becomes of O(1) along the saturation curve (4.29). More general diffractive processes

— characterized by a rapidity gap between the products of the collision — are obtained

by ‘cutting’ the multiple scattering series in between successive graviton exchanges, and

by allowing for more general diffractive states: the strings in the final states need not

be exactly the same as the incoming ones, rather they can be internal excitations of the

latter, like higher Kaluza-Klein modes. Whenever this happens, the process is genuinely

absorptive, already at the level of the elementary ρ − ρ′ amplitude.

The diffractive excitations of the string have been first discussed in ref. [12] in flat

space. Leaving a rigorous treatment of this effect in AdS5 for future work, here we only

give an estimate of its magnitude. The internal excitation of incoming strings is due to

the finiteness of the string size. This effect can be understood as the result of the tidal

force [45] experienced by one of the strings traversing a gravitational shock wave created

by the other. In the operator eikonal approach of [12], the real part of the phase shift reads

eτ

N2
c

U
′2

U2
≈ eτ

N2
c

u′2

u2
+

1

2

∂2

∂u2

(

eτ

N2
c

u′2

u2

)

Ũ Ũ + · · · , (4.31)

where again capital letters denote operators, decomposed between zero and non-zero modes

as U = u + Ũ . The non-zero mode Ũ is typically of the order the string size, as measured

by a local inertial observer:

Ũ ∼ ls
u

R
, (4.32)

so the expansion parameter in eq. (4.31) is l2s/R
2 = 1/

√
λ. The strength of string excitations

leading to absorption is measured by the second term of eq. (4.31). It reaches unity when

τ = ρ − ρ′ + ln N2
c + ln

√
λ , (4.33)

which, once again, is parametrically the same as eq. (4.29). (Remember that we are in

the regime where lnN2
c > λ ≫ lnλ.) We thus see that all types of diffractive processes —

both the quasi-elastic ones, cf. eq. (4.30), and the genuinely absorptive ones, cf. eq. (4.31)

— contribute on equal grounds to the imaginary part of the forward scattering amplitude,

and approach the unitarity limit along the curve exhibited in eq. (4.29). This is in contrast

to the flat space result [12] where the imaginary part due to string excitations is suppressed

with respect to the real part by an inverse power of the impact parameter l2s/b
2.

So far, the diffractive unitarity line (4.29) has been derived for the scattering between

two states localized at ρ and ρ′. But it is easy to check that a similar line, with ρ′ = 0,

applies to the dilaton as whole. Indeed, after performing the convolution with the dilaton

wavefunction, the relevant amplitude can be evaluated as in eq. (3.16), which gives

T2g(ρ, τ) ≃
ρ−ρs0
∫

0

dρ′
[

eτ

N2
c

e−(ρ−ρ′)

]2

e−∆ρ′ +

∞
∫

ρ−ρs0

dρ′ e−∆ρ′ , (4.34)
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where now ρs0 ≡ τ − ln N2
c , cf. eq. (4.29), and we have assumed that ρ > ρs0. In writing

the equation above, we have focused on the two-graviton exchange, cf. eq. (4.30), since this

is the dominant contribution when approaching the saturation lien from large values of ρ.

At this point, it is important to remember that the dilaton conformal dimension satisfies

∆ > 2, as manifest on eq. (4.8). Hence, the first integral in eq. (4.34) is dominated by

its lower limit ρ′ = 0 and, moreover, the second integral is exponentially suppressed w.r.t.

the first one. Thus, once again, we find that the scattering is controlled by the dilaton

component living near the infrared cutoff at u ∼ u0. This yields

T2g(ρ, τ) ≃
[

eτ

N2
c

e−ρ

]2

, (4.35)

which becomes of O(1) for ρ ≃ ρs(τ) = τ − ln N2
c , in agreement with eq. (3.29).

For ρ > ρc, with ρc defined in eq. (3.28), the curve (3.29) lies below the unitarity

line (3.24) for inelastic processes (see also figure 3), meaning that, when increasing τ in

this regime, the unitarization of DIS proceeds via diffractive processes. Therefore, eq. (3.29)

represents the physical saturation line for ρ > ρc. This conclusion is further corroborated

by the following facts:

(i) at ρ = ρc, the two branches of the saturation line, eq. (3.24) and, respectively,

eq. (3.29), continuously match with each other, and

(ii) for ρ > ρc, the energy-momentum sum rule (3.14) is saturated by the diffractive

processes (see below), showing that no important physical mechanism has been left

out by the previous analysis.

To evaluate the sum-rule (3.14), notice first that a contribution to F2 due to the

exchange of n gravitons (with n ≥ 2), is parametrically

F2(τ,Q
2) ∼ N2

c eρ Tng(ρ, τ) ∼ N2
c

Q2

Λ2

(

eτ

N2
c (Q2/Λ2)

)n

. (4.36)

When this is inserted within the eq. (3.14), it is clear that, for any n ≥ 2, the integrand

is strongly peaked at the saturation value τs = ρ + ln N2
c : indeed, the integrand rises

exponentially with τ so long as τ < τs, but it is exponentially decreasing at τ > τs.

Moreover, at the peak value, Tng(ρ, τ = τs) ∼ O(1), so the integral is evaluated as

∫

dτ e−τF2(τ,Q
2) ∼ N2

c

Q2

Λ2
e−τs(ρ) ∼ O(1). (4.37)

This result is independent of Q2, as anticipated. Interestingly, the above calculation also

shows that, at high Q2, most of the total energy (or longitudinal momentum) of the hadron

lies along the saturation line (3.29), that is, at relatively large rapidities, or small values of x.

This is in sharp contrast with what happens in QCD at weak coupling, where the energy of

a fast moving hadron is predominantly carried by the hadron constituents (‘partons’) with

relatively large values of x, or small values of τ , well below the corresponding saturation
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value τs(ρ). We shall return to this observation in the final, discussion, section, where we

shall attempt a partonic interpretation for our results at strong coupling.

We conclude this section with some estimates for F2(τ,Q
2) in the vicinity of the sat-

uration line (3.29), to be compared to the corresponding results in pQCD, cf. eqs. (2.30)

and (2.31). Note first that eq. (3.29) implies Q2
s(τ) = Λ2(eτ/N2

c ).

For relatively low virtualities, Q2 <∼ Q2
s(τ), one finds

F2(τ,Q
2) ∼ N2

c Q2

Λ2
when Q2 <∼ Q2

s(τ) , (4.38)

which shows saturation, in the sense that F2 does not increases with τ , and that F2/Q
2 is

not divergent as Q2 → 0. (A physical interpretation for this behaviour will be proposed in

section 5.)

For Q2 much larger than Q2
s(τ), the structure function is dominated by the two-graviton

exchange and scales as

F2(τ,Q
2) ∼ N2

c Q2

Λ2

(

eτΛ2

N2
c Q2

)2

, (4.39)

or

F2(τ,Q
2)

Q2
∼ N2

c

Λ2

(

Q2
s(τ)

Q2

)2

when Q2 ≫ Q2
s(τ) . (4.40)

This is geometric scaling (compare to the weak-coupling result in eq. (2.30)), with an

effective anomalous dimension γs = −1, which however is no longer associated with the

anomalous dimension of the twist-two operator. Indeed, the contribution exhibited in

eqs. (4.39) or (4.40) is obviously of higher twist order, and in fact this process has an

analog in standard DIS: the ‘diffractive dissociation’ of the virtual photon, γ∗p → qq̄p,

which involves the elastic scattering between the ‘color dipole’ (the qq̄ pair) and the proton

(see, e.g., [26, 34, 49]). There are however some interesting differences between these results

and the corresponding ones at weak coupling:

(i) In pQCD, the diffractive scattering represents only a tiny fraction of the total DIS

cross-section, whereas in the present, strong-coupling, case this has been found to

be the dominant component at high energy, which in particular is responsible for

unitarization.

(ii) The diffractive structure function FD
2 in pQCD at high energy (small x) and large

Q2 is formally a leading-twist quantity, FD
2 /Q2 ∼ 1/Q2, although the relevant dipole

amplitude is, of course, of higher-twist order. This is so since, in computing FD
2 ,

the convolution with the virtual photon wavefunction, eq. (2.4), is dominated by the

relatively large qq̄ excitations having r ≫ 1/Q (the so-called ‘aligned-jet configura-

tions’) [34, 49]. This does not happen, however, in the present context at strong

coupling, where the convolution in eq. (4.23) is controlled by u ∼ uc ∼ Q. Accord-

ingly, the ensuing structure function is a higher-twist quantity, cf. eq. (4.40), so like

the elementary scattering amplitude in eq. (4.30).
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Figure 3: Proposed ‘phase diagram’ for DIS at high energy and strong coupling when lnN2
c ≫

√
λ.

The continuous, thick, line represents the saturation line. The other boundaries are explained in

the text.

5. Physical discussion: towards a partonic picture at strong coupling

Let us first summarize the main new results in this paper, before we propose a physical

interpretation for them. (These results are also graphically summarized in figure 3.) By

studying deep inelastic scattering at strong ’t Hooft coupling and high energy within the

dual string theory, we have inferred the position of the saturation line which separates the

weak-scattering regime from the strong-scattering one in the kinematical plane τ − ρ, with

τ = ln(s/Q2) and ρ = ln(Q2/Λ2). This line is in fact the juxtaposition of two curves,

matching with each other at the point (ρc, τc) defined in eq. (3.28), which correspond to

the two different mechanisms responsible for unitarization in different kinematical regions:

• For ρ ≤ ρc ≃ 4 ln N2
c /

√
λ, the scattering amplitude in the vicinity of the unitarity

limit is controlled by a single Pomeron exchange; this amplitude becomes of O(1) on

the saturation line given by eqs. (3.13) or (3.24), i.e., when Q2 = Q2
s(τ), with the

– 36 –



J
H
E
P
0
1
(
2
0
0
8
)
0
2
6

saturation momentum

Q2
s(τ) = Λ2 e

√
4Dτ(ω0τ−lnN2

c ) for τcr < τ < τc , (5.1)

with ω0 = 1− 2/
√

λ, D = 2/
√

λ, and τcr ≃ ln N2
c is the critical rapidity for the onset

of unitarity corrections.

• For ρ > ρc, the dominant contribution to the DIS structure function before unitariza-

tion comes from multiple exchanges of elementary gravitons; the reaches the unitarity

limit on the saturation line shown in eq. (3.24), i.e., for Q2 = Q2
s(τ), with

Q2
s(τ) = Λ2 eτ

N2
c

for τ > τc . (5.2)

In figure 3, the lower branch of the saturation line, eq. (5.1), is also represented, as a

dotted line, for τ > τc, where it indicates the ‘unitarity limit’ for inelastic processes, i.e.,

the line along which the contribution of the single-Pomeron exchange to the DIS amplitude

becomes of O(1). Note that the ‘diffusion approximation’ that was implicitly used in

deriving the equation of this line in section 3.2 is still valid6 for such large values of ρ

because, along this line, j <∼ 3, with the upper limit j = 3 corresponding to ρ → ∞. (This

can be checked by using eq. (4.25) together with the large–ρ version of eq. (3.24), that

is, τs(ρ) ≃ (λ1/4ρ/
√

2 + ln N2
c )/2.) Below that line and for ρ > ρc, the DIS cross-section

is dominated by the diffractive processes (whose contribution becomes of O(1) already

along the proper saturation curve, eq. (5.2)), whereas above that line, both diffractive and

inelastic processes contribute on equal footing and together give an amplitude T = 1. Also,

below the saturation line (5.2), the DIS cross-section for ρ > ρc is predominantly diffractive,

of higher-twist order, and it exhibits geometric scaling, cf. eq. (4.40). The upper corner of

figure 3 denoted as ‘strong gravity’ will be discussed towards the end of this section.

So far we have assumed N2
c > e

√
λ, to allow both regimes alluded to above to coexist

with each other. But it should be clear that the opposite case N2
c ≪ e

√
λ (with Nc ≫ 1,

though) is included too in our results, as the special limit ρc → 0 : then, the first regime

squeezes to zero, meaning that there is not enough phase-space for the genuine Pomeron

behaviour to appear — the amplitude reaches values of order one via multiple graviton

exchanges already before the diffusion becomes important.

Note that the above results do not involve special properties of the dilaton target, like

its mass or its conformal dimension ∆. We therefore expect them to universally apply (at

strong coupling) to all hadrons which, like the dilaton, have a dual state localized near

the infrared cutoff u0 = ΛR2 in the radial dimension of AdS5. The same universality

applies to the form of the structure function F2(τ,Q
2) in the vicinity of the saturation

line. In the weak-scattering regime at Q2 ≫ Q2
s(τ), F2 shows a rapid rise with τ and a

rapid decrease with Q2, F2 ∝ (e2τ/Q2), cf. eq. (4.39), which is the hallmark of the double-

graviton exchange. Furthermore, at low momenta Q2 <∼ Q2
s(τ), one finds F2 ∼ N2

c Q2/Λ2,

cf. eq. (4.38), a structure which is an almost automatic consequence of the definition (3.15)

6As discussed in section 4.1, the diffusion approximation is expected to be correct so long as j ≪
√

λ.
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of F2 together with the black disk limit for the scattering amplitude. But in QCD at weak

coupling at least, this structure is also tantamount of parton saturation, which makes it

tempting to propose a similar interpretation in the strong-coupling case as well.

Let us first briefly recall the situation in pQCD (see, e.g., the review papers [27] for

more details): there, the structure function F2(τ,Q
2) measured in DIS can be interpreted

as the quark distribution in the target, as measured in the special frame (the ‘infinite

momentum frame’, or IMF) in which the target has a very large longitudinal momentum

P ≫ M . The ‘quark distribution’ is the number of quarks per unit rapidity which are

localized in impact parameter space within an area ∼ 1/Q2 fixed by the resolution of the

virtual photon; alternatively — via the uncertainty principle —, this is the number of

quark excitations with transverse momenta k⊥ <∼ Q. Hence, by knowing F2(τ,Q
2), one can

estimate the quark occupation number as

nq(τ, k⊥) ≡ dNq

dτ d2k⊥d2b⊥
≃ 1

Nc

dF2

dQ2 πR2
0

, (5.3)

where the derivative in the r.h.s. is evaluated at Q2 = k2
⊥, R0 is the radius of the hadron

disk, and the factor 1/Nc enters since we consider quarks of a given color. (Other numerical

factors, like the number of spin states, or the number of flavors, are not explicitly shown.)

Then, by using the estimates (2.30) and (2.31) for F2, one can distinguish between two

physical regimes:

(i) a dilute regime at high momenta k⊥ ≫ Qs(τ), where nq(τ, k⊥) scales like7 nq ∼
(Q2

s(τ)/k2
⊥)1−γs , and thus rises rapidly with τ due the BFKL evolution, and

(ii) a saturation regime at momenta k⊥ <∼ Qs(τ), where nq saturates at a value of order

1. This is quark saturation and, as explained in section 2, it ultimately reflects the

saturation of the gluon occupation numbers in pQCD at small x [19, 28, 29, 6, 9]:

ng(τ, k⊥) ∼ 1/ᾱs for k⊥ <∼ Qs(τ).

Returning to the strong-coupling problem of interest, it is clear that a straightforward

partonic interpretation is now hindered by the lack of a simple relation between the oper-

ators which enter the structure of the R-current (for the N = 4 SYM theory, this current

receives contributions from the Weyl fermions and from the scalar fields) and the physical

excitations in the target wavefunction: the latter would be created, or annihilated, by the

respective fundamental fields only to lowest order in perturbation theory; but at strong

coupling this relation could be strongly renormalized, in a way which is not under control.

It is not clear, though, whether such a renormalization will completely wash out the parton

picture suggested by perturbation theory. For instance, it is known that the entropy of

strongly coupled N = 4 SYM theory at finite temperature, which is a direct measure of the

number of states, differs only by a factor 3/4 from the entropy of the corresponding ideal

gas, where all the states are associated with free fundamental fields. This is suggestive that,

at least, the counting of sates is quite similar at strong coupling and at weak coupling.

7For very large k2
⊥, the anomalous dimension dies away, γs → 0, and one recovers the expected

bremsstrahlung spectrum nq ∝ 1/k2
⊥.
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A similar suggestion emerges from our present results for DIS at strong coupling.

When analyzed in view of eq. (5.3) (with Nc → N2
c − 1 ≈ N2

c , to account for the proper

number of color degrees of freedom of the fields in N = 4 SYM), the estimate (4.38)

for F2 suggests that, for transverse momenta k⊥ <∼ Qs(τ), the occupation numbers for the

fermionic and scalar fields saturate at a value of order 1. Note that, for fermions, this value

n = 1 is in agreement with the maximal occupancy allowed by the Pauli principle. Our

analysis gives no direct access to the gluon occupancy, but in view of the supersymmetry

of the underlying theory, we expect a similar saturation value, ng ∼ 1 for k⊥ <∼ Qs(τ),

for the gluons as well. This value is quite reasonable: at small coupling, one needs a high

occupancy ng ∼ 1/ᾱs ≫ 1 in order to compensate for the weakness of the interactions,

but when the coupling is strong, the gluons mutual repulsion responsible for saturation

becomes important already when ng ∼ 1.

By pushing this interpretation towards larger virtualities Q2 ≫ Q2
s(τ), where eq. (4.39)

applies, one finds that, when increasing k⊥ above Qs(τ), the (scalar and fermion) occu-

pation numbers decrease very fast, as n ∼ (Q2
s(τ)/k2

⊥)2. Assuming that this behaviour

extends to gluons as well, we deduce that, at strong coupling, there are essentially no

partons at transverse momenta above the saturation scale: at large k⊥, the spectrum con-

verges so fast that any interesting convolution involving the integral of n(τ, k⊥) over k⊥
will be dominated by k⊥ <∼ Qs(τ). Equivalently, when the hadron is probed with a given

transverse resolution scale Q2, almost all partons appear to live at very small values of

x, or large values of τ ≡ ln(1/x), above the saturation line: τ > τs(Q
2). Since, on the

other hand, such small–x partons carry only little longitudinal momentum, it is natural to

find that the energy-momentum sum rule is dominated by those partons living along the

saturation line, as shown by eq. (4.37).

It is interesting to notice that the ‘phase diagram’ in figure 3, or, more precisely, a

slice of it at fixed τ , bears some resemblance to a previous scenario for high-energy string

scattering in flat space by Amati et al [12], after replacing the impact parameter b of ref. [12]

by the photon virtuality Q2. Specifically, both pictures have in common the dominance of

the diffractive over the inelastic cross-section at large values of ρ (with ρ = ln Q2 in the

present context and ρ = b in the case of ref. [12]) and for sufficiently large values of τ .

But a closer inspection reveals also some important differences between these two pictures,

which can be attributed to our use of a nontrivial background metric. In particular, and

unlike in ref. [12], in our present analysis there is no hierarchy between the elastic and

diffractive processes: they all contribute on the same footing and simultaneously become

large on the ‘elastic line’ in eq. (4.29).

Consider finally the corner of the ‘phase diagram’ at ultrahigh energies s & N4
c which

in figure 3 is referred to as ‘strong gravity’. This is the region where the square of the

momentum transferred in the u direction, t = kuku = Guukuku, which grows with s like

tu(s) ∝ s2 (see the appendix) becomes of the same order as the total energy squared s,

meaning that the eikonal approximation cannot be trusted anymore. Physically, this is

generally interpreted (so far, mostly in the context of flat space analyses [12, 46, 47]) as the

onset of non-linear gravity effects, possibly associated with the formation of a black hole.

In this regime, the graviton self-interactions cannot be neglected anymore, so in the context
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of the scattering problem one has to resum an infinite number of interacting gravitons in

the t-channel. This is reminiscent of the non-linear, strong gluon field problem of pQCD

in the saturation regime [29, 7 – 9, 30, 48]. It would be therefore interesting to see if the

similarity between the two phenomena could be made even sharper.

Acknowledgments

We are grateful to R. Brower and C. -I. Tan for answering our questions and providing

us with their preliminary results on the eikonal resummation in AdS5. We thank I. Bena,

L. McLerran, and R. Peschanski for discussions. Y. H. thanks K. Hosomichi, R. Janik, and

L. Lipatov for helpful conversations. The work of A. M. is supported in part by the US

Department of Energy.

A. On the breakdown of the eikonal approximation at ultrahigh energies

In this appendix, we discuss the breakdown of the eikonal approximation due to large

momentum transfer at ultrahigh energies. The momentum ku transferred in the u direction

can be estimated as the u-derivative of the real part of the phase-shift δ in the S-matrix

(S = eiδ): ku ∼ ∂uδ.

Consider first the regime at relatively large Q2, such that ρ ≡ ln(Q2/Λ2) > 4τ/
√

λ.

Then, as explained in sections 4.2 and 4.3, the phase-shift is controlled by the elementary

graviton exchange, which yields

ku ∼ ∂u

(

eτ

N2
c

u2
0

u2

)

∼ eτ

N2
c

u2
0

u3
, (A.1)

and hence the invariant squared momentum transfer reads

t ≡ Guukuku ∼ 1

R2

[

eτ

N2
c

u2
0

u2

]2

, (A.2)

where we have used Guu = u2/R2. When this becomes on the order of the total squared

energy s̃ = (R2/u2)s (the rescaling factor R2/u2 is necessary to relate the four dimensional

energy to the ten dimensional one [15])

t ∼ R2

u2
s , (A.3)

the eikonal approximation breaks down. In the context of DIS, this condition must be

considered for u ∼ uc = QR2, cf. eq. (3.6), which is the value that controls the respective

cross-section. This yields the following critical line

τ = 2ρ + ln N4
c , (A.4)

above which one expects strong gravity effects, possibly leading to the formation of a black

hole.
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Consider similarly the low–Q2 regime, at ρ < 4τ/
√

λ. Then, the phase shift is asso-

ciated with the single Pomeron exchange, and can be estimated as in eq. (4.26) (for both

the real and the imaginary part):

δ ∼ 1

N2
c

eω0τ− ρ2

4Dτ (A.5)

The u-derivative introduces a factor of order 1/u (since ∂uρ = 2/u), so up to subleading

prefactors, one finds

t ≡ Guu(∂uδ)2 ∼ 1

R2N4
c

e2ω0τ− ρ2

2Dτ , (A.6)

to be compared with s̃ ≡ (R2/u2
c)s = eτ/R2. This comparison determines a curve

(

1 − 4√
λ

)

τ −
√

λρ2

4τ
= ln N4

c , (A.7)

which smoothly matches the previous line τ = 2ρ + lnN4
c , cf. eq. (A.4), at a point

(τ, ρ) =

(

ln N4
c

1 − 8/
√

λ
,
4 ln N4

c√
λ − 8

)

. (A.8)

Together, the two lines in eqs. (A.4) and (A.8) determines the boundary of the applicability

of the eikonal approximation at ultrahigh energies s & N4
c , as illustrated in figure 3.
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